1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
// transform.cc: implementation of quartic transformation functions
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
//
// Notation: g(x,z) is replaced by g(m11*x+m12*z,m21*x+m22*z)/m00^2
//
#include <eclib/marith.h>
#include <eclib/unimod.h>
#include <eclib/transform.h>
bigint g_content(const bigint& ga, const bigint& gb, const bigint& gc,
const bigint& gd, const bigint& ge)
// returns largest SQUARE which divides all
{
// first find the content:
bigint ans=abs(ga);
if(ans==1) return ans;
ans=gcd(ans,gb);
if(ans==1) return ans;
ans=gcd(ans,gc);
if(ans==1) return ans;
ans=gcd(ans,gd);
if(ans==1) return ans;
ans=gcd(ans,ge);
if(ans==1) return ans;
// if content non-trivial, get its divisors whose square divides
// (as we alreasy have this function to hand...)
vector<bigint> cdivs = sqdivs(ans);
// and return the last in the list, which is the biggest:
return cdivs[(cdivs.size())-1];
}
void apply_transform(bigint& a, bigint& b, bigint& c, bigint& d, bigint& e,
const unimod& m)
{
bigint m11=m(1,1), m12=m(1,2), m21=m(2,1), m22=m(2,2);
bigint m112=sqr(m11); bigint m113=m112*m11; bigint m114=m113*m11;
bigint m212=sqr(m21); bigint m213=m212*m21; bigint m214=m213*m21;
bigint m222=sqr(m22); bigint m223=m222*m22; bigint m224=m223*m22;
bigint m122=sqr(m12); bigint m123=m122*m12; bigint m124=m123*m12;
bigint newa = m214*e + m11*m213*d + m112*m212*c + m113*m21*b + m114*a;
bigint newe = m224*e + m12*m223*d + m122*m222*c + m123*m22*b + m124*a;
bigint newb = 4*m213*m22*e + (3*m11*m212*m22+m12*m213)*d
+ 2*(m112*m21*m22+m11*m12*m212) * c
+ (3*m112*m12*m21+m113*m22)*b + 4*m113*m12*a;
bigint newd = 4*m21*m223*e + (3*m12*m21*m222+m11*m223)*d
+ 2*(m122*m21*m22+m11*m12*m222)*c
+ (m123*m21+ 3*m11*m122*m22)*b + 4*m11*m123*a;
bigint newc = 6*m212*m222*e + 3*(m12*m212*m22+m11*m21*m222) * d
+ (m122*m212+ 4*m11*m12*m21*m22+m112*m222) * c
+ 3*(m11*m122*m21+m112*m12*m22) * b + 6*m112*m122*a;
a=newa; b=newb; c=newc; d=newd; e=newe;
}
void apply_transform(bigint& a, bigint& b, bigint& c, bigint& d, bigint& e,
const scaled_unimod& m)
{
apply_transform(a,b,c,d,e,(unimod)m);
bigint u2=sqr(m.scale_factor());
if(u2>1)
{
divide_exact(a,u2,a);
divide_exact(b,u2,b);
divide_exact(c,u2,c);
divide_exact(d,u2,d);
divide_exact(e,u2,e);
}
}
void xshift(const bigint& alpha,
bigint& a, bigint& b, bigint& c, bigint& d, bigint& e,
unimod& m)
{
e = e+alpha*(d+alpha*( c+alpha*( b+ alpha*a)));
d = d+alpha*(2*c+alpha*(3*b+4*alpha*a));
c = c+alpha*(3*b+6*alpha*a);
b = b+4*alpha*a;
//a = a;
m.x_shift(alpha);
}
void zshift(const bigint& gamma,
bigint& a, bigint& b, bigint& c, bigint& d, bigint& e,
unimod& m)
{
a = a+gamma*(b+gamma*( c+gamma*( d+ gamma*e)));
b = b+gamma*(2*c+gamma*(3*d+4*gamma*e));
c = c+gamma*(3*d+6*gamma*e);
d = d+4*gamma*e;
//e = e;
m.y_shift(gamma);
}
void m_invert(bigint& a, bigint& b, bigint& c, bigint& d, bigint& e,
unimod& m)
{
swap(a,e); swap(b,d); ::negate(b); ::negate(d);
m.invert();
}
void m_invert(bigint& a, bigint& b, bigint& c, bigint& d, bigint& e,
scaled_unimod& m)
{
swap(a,e); swap(b,d); ::negate(b); ::negate(d);
m.invert();
}
int check_transform(const bigint& a, const bigint& b, const bigint& c,
const bigint& d, const bigint& e,
const unimod& m,
const bigint& xa, const bigint& xb, const bigint& xc,
const bigint& xd, const bigint& xe)
{
bigint aa(a), bb(b), cc(c), dd(d), ee(e);
apply_transform(aa,bb,cc,dd,ee,m);
if(aa!=xa) return 0;
if(bb!=xb) return 0;
if(cc!=xc) return 0;
if(dd!=xd) return 0;
if(ee!=xe) return 0;
return 1;
}
int check_transform(const bigint& a, const bigint& b, const bigint& c,
const bigint& d, const bigint& e,
const scaled_unimod& m,
const bigint& xa, const bigint& xb, const bigint& xc,
const bigint& xd, const bigint& xe)
{
bigint aa(a), bb(b), cc(c), dd(d), ee(e);
apply_transform(aa,bb,cc,dd,ee,m);
if(aa!=xa) return 0;
if(bb!=xb) return 0;
if(cc!=xc) return 0;
if(dd!=xd) return 0;
if(ee!=xe) return 0;
return 1;
}
|