1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
// vec.cc: implementation of integer vector classes
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// Only to be included by vector.cc
// Definitions of member operators and functions:
vec::~vec()
{
delete[] entries;
}
vec::vec(long n)
{
d=n;
entries=new scalar[n];
if (!entries) {cout<<"Out of memory!\n"; abort();}
scalar *v=entries; while(n--) *v++=0;
}
vec::vec(long n, scalar* arr) //entries must have at least n elements!
{
d=n;
entries=new scalar[n];
if (!entries) {cout<<"Out of memory!\n"; abort();}
scalar *v=entries; while(n--) *v++=*arr++;
}
vec::vec(const vec& v) // copy constructor
{
d=v.d;
entries=new scalar[d];
if (!entries) {cout<<"Out of memory!\n"; abort();}
scalar *v1=entries, *v2=v.entries; long n=d;
while(n--) *v1++=*v2++;
}
void vec::init(long n) // (re)-initializes
{
if (d!=n) // no point in deleting if same size
{
delete[] entries;
d = n;
entries=new scalar[d];
if (!entries) {cout<<"Out of memory!\n"; abort();}
}
scalar *v=entries; while(n--) *v++=0;
}
vec& vec::operator=(const vec& v) // assignment
{
if (this==&v) return *this;
if (d!=v.d) // no point in deleting if new is same size
{
delete[] entries;
d = v.d;
entries=new scalar[d];
if (!entries) {cout<<"Out of memory!\n"; abort();}
}
scalar *v1=entries, *v2=v.entries; long n=d;
while(n--) *v1++=*v2++;
return *this;
}
scalar& vec::operator[](long i) const
{
if ((i>0) && (i<=d)) return entries[i-1];
else {cout << "bad subscript in vec::operator[]\n"; abort(); return entries[0];}
}
vec& vec::operator+=(const vec& q2)
{
scalar* vi=entries, *wi=q2.entries; long i=d;
if (d==q2.d) {while(i--)(*vi++)+=(*wi++);}
else {cout << "Incompatible vecs in vec::operator+=\n"; abort();}
return *this;
}
void vec::addmodp(const vec& w, scalar pr)
{
scalar* vi=entries, *wi=w.entries; long i=d;
if (d==w.d) {while(i--) {*vi = xmod((*wi++)+(*vi),pr);vi++;}}
else {cout << "Incompatible vecs in vec::addmodp\n"; abort(); }
}
vec& vec::operator-=(const vec& q2)
{
scalar* vi=entries; scalar* wi=q2.entries; long i=d;
if (d==q2.d) {while(i--)(*vi++)-=(*wi++);}
else {cout << "Incompatible vecs in vec::operator-=\n"; abort();}
return *this;
}
vec& vec::operator*=(scalar scal)
{
scalar* vi=entries; long i=d;
while (i--) (*vi++) *= scal;
return *this;
}
vec& vec::operator/=(scalar scal)
{
scalar* vi=entries; long i=d;
while (i--) (*vi++) /= scal;
return *this;
}
vec vec::slice(long first, long last) const // returns subvector
{
if (last==-1) {last=first; first=1;}
long n = last-first+1;
vec ans(n);
scalar *veci=entries+(first-1), *ansi=ans.entries; long i=n;
while (i--) *ansi++ = *veci++;
return ans;
}
vec vec::operator[](const vec& index) const // returns v[index[j]]
{long i=index.d; vec w(i);
scalar* wi=w.entries, *indexi=index.entries;
while (i--) (*wi++) = entries[(*indexi++)-1];
return w;
}
scalar vec::sub(long i) const
{
if ((i>0) && (i<=d)) return entries[i-1];
else {cout << "bad subscript in vec::sub\n"; abort(); return 0;}
}
void vec::set(long i, scalar x)
{
if ((i>0) && (i<=d)) entries[i-1]=x;
else {cout << "bad subscript in vec::set\n"; abort(); }
}
void vec::add(long i, scalar x)
{
if ((i>0) && (i<=d)) entries[i-1]+=x;
else {cout << "bad subscript in vec::add\n"; abort(); }
}
// Definitions of non-member, friend operators and functions
scalar operator*(const vec& v, const vec& w)
{
long dim=v.d, dot=0;
scalar* vi=v.entries, *wi=w.entries;
if (dim==w.d)
while (dim--) dot+= (*vi++)*(*wi++);
else
{
cout << "Unequal dimensions in dot product\n";
abort();
}
return dot;
}
int operator==(const vec& v, const vec& w)
{
long dim=v.d;
long equal = (dim==w.d);
scalar* vi=v.entries, *wi=w.entries;
while ((dim--) && equal) equal = ((*vi++)==(*wi++));
return equal;
}
int trivial(const vec& v)
{
int ans=1, i=v.d; scalar* vi=v.entries;
while ((i--)&&ans) ans=((*vi++)==0);
return ans;
}
ostream& operator<<(ostream& s, const vec& v)
{
long i=v.d; scalar* vi=v.entries;
s << "[";
while (i--) {s<<(*vi++); if(i)s<<",";}
s << "]";
return s;
}
istream& operator>>(istream& s, vec& v)
{
long i = v.d;
scalar* vi = v.entries;
while (i--) s >> (*vi++);
return s;
}
vec iota(scalar n)
{
vec v(n);
scalar* entriesi=v.entries; long i=0;
while (i<n) (*entriesi++)=(++i);
return v;
}
scalar vecgcd(const vec& v)
{
long i=v.d;
scalar g=0;
if (i==0) {g=1;} // so empty vector has content 1, not 0
scalar *vi=v.entries;
while ((i--)&&(g!=1)) g=gcd(g,*vi++);
return g;
}
void swapvec(vec& v, vec& w)
{scalar *temp;
if (v.d==w.d) {temp=v.entries; v.entries=w.entries; w.entries=temp;}
else {cout << "Attempt to swap vecs of different lengths!\n"; abort();}
}
int member(scalar a, const vec& v)
{int ans=0; long i=dim(v); scalar* vi=v.entries;
while (i--&&!ans) ans=(a==(*vi++));
return ans;
}
// Definition of non-friend operators and functions
vec reverse(vec& order)
{ long i,n = dim(order);
vec ans(n);
for (i=1; i<=n; i++) ans.set(order[i],i);
return ans;
}
vec express(const vec& v, const vec& v1, const vec& v2)
{
vec ans(3);
scalar v1v1 = v1 * v1;
scalar v1v2 = v1 * v2;
scalar v2v2 = v2 * v2;
scalar vv1 = v * v1;
scalar vv2 = v * v2;
ans[1]= vv1*v2v2 - vv2*v1v2;
ans[2]= vv2*v1v1 - vv1*v1v2;
ans[3]= v1v1*v2v2 - v1v2*v1v2;
scalar g = vecgcd(ans);
if (g>1) ans/=g;
if (ans[3]*v!=ans[1]*v1+ans[2]*v2)
{
cout << "Error in express: v is not in <v1,v2>\n";
abort();
}
return ans;
}
#if(0) // simple version of lift
int lift(const vec& v, scalar pr, vec& ans)
{
long i, d = dim(v);
ans =vec(d);
int success, succ;
float lim = sqrt(pr/2.0);
scalar g, nu, de; // = least common denom. after lifting via modrat
for (i=1, g=1, success=1; i<=d; i++)
{
succ = modrat(ans[i],pr,lim,nu,de); de=abs(de);
success = success && succ;
g=lcm(g,de);
}
for (i=1; i<=d; i++) ans[i] = mod(xmodmul(g,ans[i],pr),pr);
//Repeat if any failures were found
if(!success)
{
for (i=1, g=1, success=1; i<=d; i++)
{
succ = modrat(ans[i],pr,lim,nu,de); de=abs(de);
success = success && succ;
g=lcm(g,de);
}
for (i=1; i<=d; i++) ans[i] = mod(xmodmul(g,ans[i],pr),pr);
}
if(!success)
{
//cout << "vec failed to lift from mod " << pr << " after two rounds.\n";
return 0;
}
return 1;
}
#else
//#define LIFT_DEBUG
int lift(const vec& v, scalar pr, vec& ans)
{
long i0, i, j, d = dim(v);
scalar nu, de;
int succ;
float lim = sqrt(pr/2.0)-1;
scalar maxallowed = 10*int(lim);
#ifdef LIFT_DEBUG
cout<<"Lifting vector v = "<<v<<endl;
#endif
// NB We do *not* make cumulative rescalings, since it is possible
// for an apparently successful modrat reconstruction to give an
// incorrect denominator. I have an example with pr=2^30-35 where
// the correct denominator is 4666 and one entry of the correct
// primitive scaled vector is 47493 (greater than lim = 23170) but
// since 47493/4666 = 587037152 = -10193/21607 (mod pr), rational
// reconstruction returned nu=-10193, de = 21607. If we kept the
// (unsuccessful) scaling by 21607, all subsequent numerators would
// be multiplied by this and we would never succeed.
// This code allows for some entries to be >lim, and works as long as
// (1) there is a lift with all entried at most 10*lim, (2) at least
// one entry has the correct denominator, which is equaivalent to
// requiring that in the primitive rescaling, there is an entry
// coprime to the first non-zero entry.
ans = v; // starts as a copy, and will be rescaled in place
scalar vi0, inv_vi0, vi, maxvi=0;
for(i0=1; i0<=d; i0++)
{
// scale so that i0'th entry is 1 mod p, then reduce vector
// entries mod p to lie in (-p/2,p/2), and find the maximum
// entry:
while((vi0=mod(v[i0],pr))==0) {i0++;} // skip over any zero entries
inv_vi0=invmod(vi0,pr);
for (i=1; i<=d; i++)
{
ans[i]=vi=mod(xmodmul(inv_vi0,ans[i],pr),pr);
maxvi=max(maxvi,abs(vi));
}
#ifdef LIFT_DEBUG
cout<<"Reduced v = "<<ans<<", with max entry "<<maxvi<<endl;
#endif
if(maxvi<=maxallowed) // no scaling needed!
{
// Normalize so first nonzero entry is positive:
for(i0=1; i0<=d; i0++)
{
while(ans[i0]==0) {i0++;}
if(ans[i0]<0) ans=-ans;
return 1;
}
return 0; // should not happen: means v==0!
}
for(i=1; (i<=d); i++)
{
succ=modrat(ans[i],pr,lim,nu,de); de=abs(de);
if ((!succ)||(de==1)) continue; // loop on i
// scale by de & recompute max entry:
#ifdef LIFT_DEBUG
cout<<"Scaling by d="<<de<<endl;
#endif
maxvi = 0;
for (j=1; j<=d; j++)
{
ans[j] = vi = mod(xmodmul(de,ans[j],pr),pr);
maxvi=max(maxvi,abs(vi));
}
#ifdef LIFT_DEBUG
cout<<"Now v = "<<ans<<", with max entry "<<maxvi<<endl;
#endif
if(maxvi<=maxallowed)
{
// Normalize so first nonzero entry is positive:
for(i0=1; i0<=d; i0++)
{
while(ans[i0]==0) {i0++;}
if(ans[i0]<0) ans=-ans;
return 1;
}
return 0; // should not happen: means v==0!
}
}
}
// Normalize so first nonzero entry is positive:
for(i0=1; i0<=d; i0++)
{
while(ans[i0]==0) {i0++;}
if(ans[i0]<0) ans=-ans;
return (maxvi<=lim);
}
return 0;
}
#endif
#if(0) // old version
int old_liftok(vec& v, scalar pr)
{
long i, d = dim(v);
scalar g, nu, de;
int success, succ;
float lim = sqrt(pr/2.0)-1;
// scale vector so that first non-zero entry is 1
i=1; while(mod(v[i],pr)==0) i++;
scalar ivi = invmod(v[i],pr); v[i]=1; i++;
for (; i<=d; i++) v[i]=mod(xmodmul(ivi,v[i],pr),pr);
for (i=1, g=1, success=1; i<=d; i++)
{
succ=modrat(v[i],pr,lim,nu,de); de=abs(de);
success = success && succ;
// Can't say success=success&&modrat(...) as then after first fail it does
// not call modrat at all due to clever compiler!
g=lcm(g,de);
// if(succ&&(de>1))cout<<"Found denom of "<<de<<" from "<<v[i]<<", new g = "<<g<<"; ";
}
if(!success)
{
cout << "modrat problems encountered lifting vector:\n";
cout << v << "\n from mod " << pr << endl;
cout << "Using denom = " << g << endl;
}
for (i=1; i<=d; i++) v[i] = mod(xmodmul(g,v[i],pr),pr);
// if(!success) // have another go
// {
// for (i=1, g=1, success=1; i<=d; i++)
// {
// succ=modrat(v[i],pr,lim,nu,de); de=abs(de);
// success = success && succ;
// g=lcm(g,de);
// }
// for (i=1; i<=d; i++) v[i] = mod(xmodmul(g,v[i],pr),pr);
// }
if(!success)
{
cout << "returning vector:\n";
cout << v << endl;
}
return success;
}
#endif
scalar dotmodp(const vec& v1, const vec& v2, scalar pr)
{
scalar ans=0;
for(long i=1; i<=dim(v1); i++) ans=mod(ans+mod(v1[i]*v2[i],pr),pr);
return ans;
}
|