1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
// mequiv.cc: implementation of quartic equivalence functions
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/mequiv.h>
//#ifdef NEW_EQUIV
int new_equiv(quartic* q1, quartic* q2, int info)
{
if(info)
{
cout<<"Checking equivalence of " << *q1 << " and " << *q2 << "\n";
}
bigint& ii=q1->ii;
bigint& jj=q1->jj;
if (!(ii==q2->ii && jj==q2->jj && q1->disc==q2->disc && q1->type== q2->type))
{
if (info)
{
cout << "equiv failed on first test!\n";
cout << "First has I="<<q1->ii<<", J="<<q1->jj<<",";
cout << " disc="<<q1->disc<<", type="<<q1->type<<endl;
cout << "Second has I="<<q2->ii<<", J="<<q2->jj<<",";
cout << " disc="<<q2->disc<<", type="<<q2->type<<endl;
}
return 0;
}
if(q1->equiv_code!=q2->equiv_code)
{
if(info) cout << "--equiv_codes not equal\n";
return 0;
}
q1->make_zpol();
q2->make_zpol();
bigint& p1=q1->p; bigint& p2=q2->p;
bigint& r1=q1->r; bigint& r2=q2->r;
bigint& p1sq=q1->psq; bigint& p2sq=q2->psq;
bigint& a1=q1->a; bigint& a2=q2->a;
bigint& a1sq=q1->asq; bigint& a2sq=q2->asq;
const bigint& a1a2=a1*a2;
const bigint& p1p2=p1*p2;
const bigint& p = (32*a1a2*ii + p1p2)/3;
const bigint& s = (-256*jj*a1a2*(a1*p2+a2*p1)
+ 64*ii*(p1sq*a2sq+p2sq*a1sq+p1p2*a1a2)
- p1sq*p2sq) / 27;
const bigint& r = r1*r2;
if(info) cout<<"u-poly = [1,0, " << -2*p<< ", "<<-8*r<<", "<<s<<"]\n";
// Compute the roots of "u-poly", see if any are integral, and check:
// The roots are sqrt(z1*w1)+sqrt(z2*w2)+sqrt(z3*w3) with some choice of signs,
// where the wi are the z-values of the second quartic. We compute the zi
// from the roots of the first, then to ensure that conjugates are matched
// we compute the wi from the zi (via, invisibly, the phi_i).
bigcomplex* roots1 = q1->getroots();
bigfloat xa1=I2bigfloat(a1), xa2=3*I2bigfloat(a2);
bigcomplex rz1=xa1*(roots1[0]+roots1[1]-roots1[2]-roots1[3]);
bigcomplex rz2=xa1*(roots1[0]-roots1[1]+roots1[2]-roots1[3]);
bigcomplex rz3=xa1*(roots1[0]-roots1[1]-roots1[2]+roots1[3]);
bigcomplex t = I2bigfloat(a1*p2-a2*p1), tt=1/I2bigfloat(3*a1);
bigcomplex rzw1 = rz1*sqrt((xa2*rz1*rz1+t)*tt);
bigcomplex rzw2 = rz2*sqrt((xa2*rz2*rz2+t)*tt);
bigcomplex rzw3 = rz3*sqrt((xa2*rz3*rz3+t)*tt);
bigcomplex u;
for(long k=0; k<4; k++)
{
switch(k) {
case 0: u=rzw1+rzw2+rzw3; break;
case 1: u=rzw1+rzw2-rzw3; break;
case 2: u=rzw1-rzw2+rzw3; break;
case 3: u=rzw1-rzw2-rzw3; break;
}
if(is_approx_zero(imag(u)))
{
bigint uu = Iround(real(u));
bigint uu2=uu*uu;
bigint fuu1 = (uu2-2*p)*uu2+s;
bigint fuu2 = 8*r*uu;
if(fuu1==fuu2)
{
if(info) cout<<"Root u = "<<uu<<endl;
return 1;
}
if(fuu1==-fuu2)
{
if(info) cout<<"Root u = "<<-uu<<endl;
return 1;
}
}
}
if(info) cout<<"No integral roots"<<endl;
return 0;
}
//#else // not using new_equiv so no need to compile this stuff
int testd(const bigint& a, const bigint& b, const bigint& c,
const bigint& d, const bigint& e, const bigint& as,
const bigint& bs, const bigint& cs, const bigint& ds,
const bigint& es, const bigint& dd, const bigint& al,
const bigint& be, const bigint& ga, const bigint& de,
int info);
bigcomplex crossratio(const bigcomplex& x1,const bigcomplex& x2,const bigcomplex& x3,const bigcomplex& x4);
int rootsequiv(const quartic* q1, const quartic* q2, int i, const vector<bigint>& dlist, int info);
int allperms[24][4] =
{{0,1,2,3},{1,0,2,3},{0,1,3,2},{1,0,3,2}, // Up to here for Type III
{2,3,0,1},{2,3,1,0},{3,2,0,1},{3,2,1,0}, // Up to here for Type I
{0,2,1,3},{0,2,3,1},{0,3,1,2},{0,3,2,1},
{1,2,0,3},{1,2,3,0},{1,3,0,2},{1,3,2,0},
{2,0,1,3},{2,0,3,1},{2,1,0,3},{2,1,3,0},
{3,0,1,2},{3,0,2,1},{3,1,0,2},{3,1,2,0},}; // All for Type II
int testd(const bigint& a, const bigint& b, const bigint& c,
const bigint& d, const bigint& e, const bigint& as,
const bigint& bs, const bigint& cs, const bigint& ds,
const bigint& es, const bigint& dd, const bigint& al,
const bigint& be, const bigint& ga, const bigint& de,
int info)
{
bigint d2 = dd*dd;
bigint al2=al*al, al3=al2*al, al4=al3*al;
bigint ga2=ga*ga, ga3=ga2*ga, ga4=ga3*ga;
bigint temp = ga4*es + al*ga3*ds + al2*ga2*cs + al3*ga*bs + al4*as - d2*a;
if (!is_zero(temp)) return 0;
bigint de2=de*de, de3=de2*de, de4=de3*de;
bigint be2=be*be, be3=be2*be, be4=be3*be;
temp = de4*es + be*de3*ds + be2*de2*cs + be3*de*bs + be4*as - d2*e;
if (!is_zero(temp)) return 0;
temp = 4*ga3*de*es + (3*al*ga2*de+be*ga3)*ds
+ 2*(al2*ga*de+al*be*ga2) * cs
+ (3*al2*be*ga+al3*de)*bs + 4*al3*be*as - d2*b;
if (!is_zero(temp)) return 0;
temp = 4*ga*de3*es + (3*be*ga*de2+al*de3)*ds
+ 2*(be2*ga*de+al*be*de2)*cs
+ (be3*ga+ 3*al*be2*de)*bs + 4*al*be3*as - d2*d;
if (!is_zero(temp)) return 0;
temp = 6*ga2*de2*es + 3*(be*ga2*de+al*ga*de2) * ds
+ (be2*ga2+ 4*al*be*ga*de+al2*de2) * cs
+ 3*(al*be2*ga+al2*be*de) * bs + 6*al2*be2*as - d2*c;
if (!is_zero(temp)) return 0;
return 1;
} /* end of testd() */
bigcomplex crossratio(const bigcomplex& x1,const bigcomplex& x2,const bigcomplex& x3,const bigcomplex& x4)
{
return ((x1-x3)*(x2-x4))/((x1-x4)*(x2-x3));
}
int rootsequiv(const quartic* q1, const quartic* q2, int i, const vector<bigint>& dlist, int info)
{ int ans=0;
bigcomplex *x = q1->getroots();
bigcomplex *y = q2->getroots();
bigcomplex x1=x[0], x2=x[1], x3=x[2], x4=x[3];
bigcomplex y1=y[allperms[i][0]],y2=y[allperms[i][1]],
y3=y[allperms[i][2]],y4=y[allperms[i][3]];
//cout<<"X-roots ("<<x<<"): "<<x1<<x2<<x3<<x4<<endl;
//cout<<"Y-roots ("<<y<<"): "<<y1<<y2<<y3<<y4<<endl;
bigcomplex xtheta = crossratio(x1,x2,x3,x4);
bigcomplex ytheta = crossratio(y1,y2,y3,y4);
if (abs(xtheta-ytheta)>0.1)
{if (info)
{cout << i+1 << ": Cross-ratios unequal: "<<xtheta<<" and "<<ytheta<<".\n";
}
return 0;
}
if(info) cout << i+1 << ": Cross-ratios equal: "<<xtheta<<" and "<<ytheta<<".\n";
bigcomplex xy1=x1*y1, xy2=x2*y2,
xy3=x3*y3, // xy4=x4*y4,
xy23=(x2*y3)-(x3*y2),
xy13=(y1*x3)-(x1*y3),
xy12=(x1*y2)-(y1*x2);
bigcomplex calpha = (xy1*(y2-y3)) + (xy2*(y3-y1)) + (xy3*(y1-y2)),
cbeta = (xy1*xy23) + (xy2*xy13) + (xy3*xy12),
cgamma = xy13 + xy12 + xy23,
cdelta = (xy1*(x2-x3)) + (xy2*(x3-x1)) + (xy3*(x1-x2));
bigcomplex scale = calpha;
if (abs(scale)<abs(cbeta)) scale=cbeta;
if (abs(scale)<abs(cgamma)) scale=cgamma;
if (abs(scale)<abs(cdelta)) scale=cdelta;
if(is_small(scale))
{
cout << "Warning from rootsequiv(): scale = " << scale << endl;
cout << "alpha, beta, gamma, delta = " << calpha << cbeta << cgamma << cdelta << endl;
}
calpha /= scale;
cbeta /= scale;
cgamma /= scale;
cdelta /= scale;
if (!(is_real(calpha) && is_real(cbeta)
&& is_real(cgamma)
&& is_real(cdelta)))
{if (info)
{cout << "Transformation not real.\n";
cout << "alpha, beta, gamma, delta = " << calpha << cbeta << cgamma << cdelta << endl;
}
return 0;
}
bigfloat alpha = real(calpha),
beta = real(cbeta),
gamma = real(cgamma),
delta = real(cdelta);
bigfloat det = alpha*delta-beta*gamma;
if (info)
{
cout << "Real transformation has alpha, beta, gamam, delta = ";
cout <<alpha<<" "<<beta<<" "<<gamma<<" "<<delta<<endl;
cout << "Testing divisors of "<<q1->getdisc()<<":\n";
// cout << dlist << endl;
}
bigint d;
vector<bigint>::const_iterator dvar;
for (dvar=dlist.begin(); dvar!=dlist.end() && (!ans); dvar++)
{
d = *dvar;
bigfloat rscale = sqrt(abs(I2bigfloat(d)/det));
bigfloat rscaler = floor(rscale+0.5);
if(abs(rscale-rscaler)<0.001)
{
bigint al = Iround(rscale*alpha),
be = Iround(rscale*beta ),
ga = Iround(rscale*gamma),
de = Iround(rscale*delta);
bigint ddet = abs(al*de-be*ga);
if(d==ddet)
{
if (info)
{cout << "d = " << d << endl;
cout<<"rscale = "<<rscale<<endl;
cout << "al,be,ga,de = "<<al<<" "<<be<<" "<<ga<<" "<<de<<endl;
}
ans=testd(q1->geta(),q1->getb(),q1->getcc(),q1->getd(),q1->gete(),
q2->geta(),q2->getb(),q2->getcc(),q2->getd(),q2->gete(),
d,al,be,ga,de,info);
}
}
}
return ans ;
} // of rootsequiv()
int equiv(const quartic* q1, const quartic* q2, const vector<bigint>& dlist, int info)
{
bigint iiq1 = q1->getI(), jjq1 = q1->getJ(), discq1 = q1->getdisc();
bigint iiq2 = q2->getI(), jjq2 = q2->getJ(), discq2 = q2->getdisc();
int typeq1 = q1->gettype(), typeq2 = q2->gettype();
if(info)
{
cout<<"Checking equivalence of \n"; q1->dump(cout);
cout<<"and\n"; q2->dump(cout);
}
if (iiq1==iiq2 && jjq1==jjq2 && discq1==discq2 && typeq1== typeq2)
{
int nperms = (typeq1==1)? 8 : (typeq1==2)? 24 : 4;
if (info) cout << "Params agree; calling rootsequiv "<<nperms<<" times.\n";
int i,ans = 0;
for (i=0; i<nperms && (!ans); i++)
{
ans=rootsequiv(q1,q2,i,dlist,info);
}
if(info) {if(!ans) cout << "Not "; cout<<"equiv\n";}
return ans;
}
else
{
if (info) {cout << "equiv failed on first test!\n";
cout << "First has I="<<iiq1<<", J="<<jjq1<<",";
cout << " disc="<<discq1<<", type="<<typeq1<<endl;
cout << "Second has I="<<iiq2<<", J="<<jjq2<<",";
cout << " disc="<<discq2<<", type="<<typeq2<<endl;
}
return 0;
}
} // of equiv()
//#endif
|