File: pcprocs.cc

package info (click to toggle)
eclib 20160720-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,092 kB
  • ctags: 4,385
  • sloc: cpp: 46,234; makefile: 236; sh: 108
file content (375 lines) | stat: -rw-r--r-- 12,437 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// file pcprocs.cc: implementation of functions used to compute periods
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////

#include <eclib/marith.h>
#include <eclib/compproc.h>
#include <eclib/moddata.h>
#include <eclib/symb.h>
#include <eclib/oldforms.h>
#include <eclib/homspace.h>
#include <eclib/cperiods.h>     //from qcurves, for computing conductors
#include <eclib/newforms.h>
#include <eclib/periods.h>
#include <eclib/pcprocs.h>

// Function used to test whether a denominator found by ratapprox() is
// "trustworthy": always with multiprecision, but only if below
// a fixed bound otherwise.
#ifdef MPFP // Multi-Precision Floating Point
//inline int trust_denom(long d) { return (d<501);} // 1000);}
inline int trust_denom(long d) { return (d<1201);} // 1000);}
#else
inline int trust_denom(long d) { return (d<251);}
#endif

// Given a newform (the i'th in newforms) at level n with a real
// period x0; Finds a matrix [a0,b0;Nc0,d0] whose integral is
// dotplus*x0+dotminus*y0*i N.B. The value of x0 may be changed, if we
// come across some period whose real part isnot an integer multiple
// of the original x0.

// We compute periods of lots of matrices in Gamma_0(N), over all
// symbols {0,b/d} for d<dmax.  We are looking for (i) a symbol whose
// imaginary part is nonzero; (ii) a symbol whose real and imaginary
// parts are both non-zero, which we store.

int newforms::find_matrix(long i, long dmax, int&rp_known, bigfloat&x0, bigfloat&y0)
{
  int have_both=0;
  int have_rp = get_real_period(i,x0,verbose);
  int have_ip = 0;
  rp_known = have_rp;
  // have_rp is set if we know a real period; rp_known is set if we
  // know that it is the real period (strictly, the least real part of
  // a period), which should always be the case.

  // The code below allows for the situation where we do not know the
  // correct scaling factor for the real period, so that x0 will be an
  // unknown integer multiple of the minimal real period; in that
  // sitiuation we would have have_rp=1 but rp_known=0.

  // the following are to allow us a choice for the real period;
  // we'll use the value which has greater precision
  long lplus = nflist[i].lplus;
  if(nflist[i].dp0!=0) lplus=0;
  int rp_fixed = !have_rp;

  long nrx=1, nry=1, drx=1, dry=1;
  long nrx0=1, nry0=1, drx0=1, dry0=1;
  long a, b, b1, c, d;
  long& dotplus=(nflist[i].dotplus);
  long& dotminus=(nflist[i].dotminus);
  long nf_b = nflist[i].b;
  long nf_d = nflist[i].d;
  long dotplus0=1, dotminus0=1;
  periods_direct integrator(this,&(nflist[i]));

  for(d=nf_d; (d<dmax)||(!have_both); d++)
    {
      if(gcd(modulus,d)!=1) continue; long d2=d/2;
      b1 = 1;
      if(d==nf_d) b1=nf_b;
      //      for(b=b1; (b<=d2)&&(!have_both); b++)
      for(b=b1; (b<=d2); b++)
	{
	  if(bezout(d,modulus*b,a,c)!=1) continue;
	  c=-c;
	  if(verbose>1) 
	    cout << "Matrix ("<<a<<","<<b<<";"<<modulus*c<<","<<d<<"):\n";
	  integrator.compute(a,b,c,d);
	  bigfloat x = abs(integrator.rper());
	  if(have_rp)
	   {
	     bigfloat ratio=x/x0;
	     ratapprox(ratio, nrx, drx);
	     if(verbose>1) 
	       cout<<"real part = " << x << ", x/x0 = " << ratio   
		   << " =~= "<<nrx<<"/"<<drx<<"\n";
	     if(rp_known)
	       if(drx>1)
		 {
		   cout<<"******************************real part of period not an multiple of x0?\n";
		   if(verbose<=1) 
		     cout<<"real part = " << x << ", x/x0 = " << ratio   
			 << " =~= "<<nrx<<"/"<<drx<<"\n";		   
		   if(drx>10)
		     {
		       drx=1;
		       nrx=I2long(Iround(ratio));
		       cout << "Using rounded value nrx=" << nrx <<endl;
		     }
		 }
	     if(trust_denom(drx)) dotplus0=lcm(dotplus0,drx);

// fix the value of x0 if the current x is more accurate:
	     if(!rp_fixed&&(nrx>0))
	       {
		 if(d<lplus) 
		   {
		     x0=x*to_bigfloat(drx)/to_bigfloat(nrx);
		     rp_fixed=1;
		     if(verbose>1)
		       cout<<"replacing original x0 by "<<x0
			   <<" (which is more accurate since "<<d<<" < "<<lplus
			   <<"), to make the preceding ratio exact.\n";
		   }
		 rp_fixed=1;  // d will not get any smaller...
	       }
	   }
	  else
	    if(x>0.001)
	      {
		x0=x; have_rp=1; nrx=drx=1;
		if(verbose>1) cout<<"real period = " << x0 << "\n";
	      }
	  bigfloat y = abs(integrator.iper());
	  if(have_ip)
	   {
	     bigfloat ratio=y/y0;
	     ratapprox(ratio, nry, dry);
             //             cout<<"dry = "<<dry<<", trusted? "<<trust_denom(dry)<<endl;
	     if(trust_denom(dry)) dotminus0=lcm(dotminus0,dry);
	     if(verbose>1) 
	       cout<<"imag part = " << y << ", y/y0 = " << ratio   
		   << " =~= "<<nry<<"/"<<dry<<"\n"<<"dotminus0 updated to "<<dotminus0<<endl;
	   }
	  else
	    if(y>0.001)
	      {
		y0=y; have_ip=1; nry=dry=1;
		if(verbose>1) cout<<"imag period = " << y0 << "\n";
	      }
	  if(!have_both && (x>0.001) && (y>0.001) && trust_denom(dry))
	    {
	      have_both=1;
	      if(trust_denom(drx)) {nrx0=nrx; drx0=drx;} 
	      nry0=nry; dry0=dry;
             //              cout<<"nrx0="<<nrx0<<endl;	      
             //              cout<<"drx0="<<drx0<<endl;	      
	      nflist[i].a=a;
	      nflist[i].b=b;
	      nflist[i].c=c;
	      nflist[i].d=d;
	   }
       } // end of b loop
     } // end of d loop
  x0/=to_bigfloat(dotplus0);
  y0/=to_bigfloat(dotminus0);
  dotplus =(dotplus0 *nrx0)/drx0;
  dotminus=(dotminus0*nry0)/dry0;
  if(verbose>1){
    cout<<"dotplus0 ="<<dotplus0<<endl;
    cout<<"dotminus0="<<dotminus0<<endl;
    cout<<"dotplus  ="<<dotplus<<endl;
    cout<<"dotminus ="<<dotminus<<endl;
  }
  if(!have_both) {a=d=1; b=c=0; dotplus=dotminus=0;}
  return have_both;
}

// Given a newform (the i'th in newforms) at level n ,with known data
// including a matrix [a0,b0;Nc0,d0] whose integral is
// dotplus*x0+dotminus*y0*i (where x0 and y0 are real and imaginary
// periods).  Computes both x0 and y0.  rp_known, ip_known are success
// flags.

int newforms::get_both_periods(long i, bigfloat&x0, bigfloat&y0)
{
  if(nflist[i].a==0)
    {
      //      cout<<"Cannot compute get_periods(): matrix not known."<<<endl;
      return 0;
    }
  periods_direct integrator(this,&(nflist[i]));
  integrator.compute(nflist[i].a,nflist[i].b,nflist[i].c,nflist[i].d);
  x0 = abs(integrator.rper()) / to_bigfloat(nflist[i].dotplus);
  y0 = abs(integrator.iper()) / to_bigfloat(nflist[i].dotminus);
  return 1;
}

int get_curve(long n, long fac, long maxnx, long maxny,
	      const bigfloat& x0, const bigfloat& y0, 
	      long& nx, long& ny, int& type, int detail)
{
  static bigfloat zero=to_bigfloat(0);
  long fac6=(odd(fac)?fac:2*fac);
  if(detail&&(fac>1)) cout<<"c6 factor " << fac6 << endl;
	 
  bigcomplex w1, w2; bigcomplex c4, c6;
  bigfloat x1=x0, y1=y0;
  bigfloat c4err, c6err, c4c6err;
  for(nx=1; (nx<=maxnx); nx++)
    {x1=x0/to_bigfloat(nx);
    for(ny=1; (ny<=maxny); ny++)
      {
	y1=y0/to_bigfloat(ny);
	for(type=1; (type<=2); type++) 
	  {
	    if(type==2){w1=bigcomplex(x1,zero); w2=bigcomplex(zero,y1);}
	    else {w1=bigcomplex(2*x1,zero); w2=bigcomplex(x1,y1);}
	    bigcomplex tau=normalize(w1,w2);
	    getc4c6(w1,w2,c4,c6);
            // cout<<"w1 = "<<w1<<endl;
            // cout<<"w2 = "<<w2<<endl;
            // cout<<"c4 = "<<c4<<endl;
            // cout<<"c6 = "<<c6<<endl;
	    bigint ic4 = fac*Iround(real(c4)/fac);
	    bigint ic6 = fac6*Iround(real(c6)/fac6);
            c4err = abs(I2bigfloat(ic4)-real(c4));
            c6err = abs(I2bigfloat(ic6)-real(c6));
            c4c6err = max(c4err, c6err);
	    int close = (c4c6err<0.001);
	    int validc4c6 = 0;
            validc4c6 = valid_invariants(ic4,ic6);
            if((validc4c6&&close)&&detail)
	      {
		cout << "type = " << type << ", nx = " << nx << ", ny = " << ny << "\n"; 
                //                cout << "x = " << x1 << ", y = " << y1 << "\n";
		cout << "w1 = " << w1 << ", w2 = " << w2 << "\n";
		cout << "c4 = " << real(c4) << ", c6 = " << real(c6) << "\n";
		cout << "ic4 = " << ic4 << ", ic6 = " << ic6 << "\n";
	      }
            // We relax the closeness criterion here, but do not
            // ignore it completely since there have been cases where
            // c4,c6 were valid & give the right conductor but are not
            // actually correct.
	    close = (c4c6err<0.01);
	    if(validc4c6&&close) // if(validc4c6)
	      {
		Curve C(ic4,ic6);
		Curvedata CD(C,1);
		CurveRed CR(CD);
		bigint cond = getconductor(CR);
		if(cond==n)
		  {
		    if(detail)cout<<"Curve is ";
		    cout << (Curve)CD << "  N = " << cond << "  ";
// Check periods were correct:
  unsigned int disagree=0;
  Cperiods cpC(CD);
  bigcomplex wRC, wRIC;
  cpC.getwRI(wRC, wRIC);
  int Ctype = get_lattice_type(cpC);
  bigfloat x1C, y1C;
  if(Ctype==1) {x1C=real(wRC)/to_bigfloat(2); y1C=imag(wRIC);}
  else {x1C=real(wRC); y1C=imag(wRIC);}
  if(type!=Ctype)
    {
      disagree|=1;
      cout<<"Period lattice type of constructed curve does not match"<<endl;
      cout<<"Lattice type of C: "<<Ctype<<endl;
      cout<<"Guessed type:      "<<type<<endl;
    }
  if((abs((x1-x1C)/x1C)>0.001))
    {
      disagree|=2;
      cout<<"Real period of constructed curve does not match that"
	  <<" of the newform"<<endl;
      cout<<"Real period of C: "<<x1C<<endl;
      cout<<"Real period of f: "<<x1<<endl;
      cout<<"Ratio = "<<(x1/x1C)<<endl;
    }
  if((abs((y1-y1C)/y1C)>0.001))
    {
      disagree|=4;
      cout<<"Imag period of constructed curve does not match"<<endl;
      cout<<"Imag part of second period of C: "<<y1C<<endl;
      cout<<"Guessed imag part for f:         "<<y1<<endl;
      cout<<"Ratio of imaginary parts = "<<(y1/y1C)<<endl;
    }
  if(disagree)
    {
      if(disagree&1)
	{
	  cout<<"Changing type to "<<Ctype<<endl;
	  type=Ctype;
	}
      if(disagree&2)
	{
	  cout<<"Changing real scaling from "<<nx;
	  nx = I2long(Iround(x0/x1C));
	  cout<<" to "<<(x0/x1C)<<" = "<<nx<<endl;
	}
      if(disagree&4)
	{
	  cout<<"Changing imag scaling from "<<ny;
	  ny = I2long(Iround(y0/y1C));
	  cout<<" to "<<(y0/y1C)<<" = "<<ny<<endl;
	}
    }
		    return 1;
		  }     // end of if(cond==n)
		else
		{
		    if(detail) cout<<"c4,c6 valid but conductor wrong, continuing..."<<endl;
			}
	      }         // end of if(validc4c6)	   
	  }             // end of type loop
      }                 // end of ny loop
    }                   // end of nx loop
  return 0;
}

int newforms::find_lminus(long i, long lmax, const bigfloat& y1)
{
  long nry, dry, ell;
  lfchi lx(this,&(nflist[i]));
  long mm=0;
  for(primevar l; ((l<lmax)||(lmax==0))&&(mm==0); l++)
    {
      ell = l; 
      if(ell%4!=3) continue;
      if(legendre(-modulus,ell)!=nflist[i].sfe) continue;  // skip this l
      lx.compute(ell);
      bigfloat y = abs(lx.scaled_value());
      if(verbose>1) cout<<"L(f,"<<ell<<",1) = "<<y<<"\n";
      if(y>0.001)
	{
	  nflist[i].lminus=ell;
	  bigfloat ratio = y/y1;
	  if(verbose>1) cout<<"ratio = "<<ratio<<endl;
	  ratapprox(ratio, nry, dry);
	  mm=nry;
	  if(dry!=1)
	    {
              if (verbose>1)
                {
                  cout << "******************************L(f,"<<ell<<")/ip = "
                       <<ratio
                       <<" is not integral! (denom = "<<dry<<")"<<endl;
                  if(dry>10)
                    {
                      mm=I2long(Iround(ratio));
                      cout << "Using rounded value mminus=" << mm <<endl;
                    }
                }
	    }
	  if(verbose>1) 
	    cout << "lminus = "<<ell<< "\tmminus = " << mm << "\n";
	  nflist[i].mminus=mm;
	  return 1;
	}
    } // end of primes loop
  return 0;
}