1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
|
// smat.cc: implementation of sparse integer matrix class smat
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// Original version by Luiz Figueiredo
// ONLY to be included by smatrix.cc
void showrow(int*pos, scalar*val) // for debugging
{
int d=pos[0];
cout<<"[";
int* posi=pos; posi++;
scalar* vali=(scalar*)val;
while(d--) cout<<"("<<(*posi++)<<","<<(*vali++)<<")";
/*
if(sizeof(scalar)==sizeof(int))
{
int* vali=(int*)val;
while(d--) cout<<"("<<(*posi++)<<","<<(*vali++)<<")";
}
else
{
long* vali=(long*)val;
while(d--) cout<<"("<<(*posi++)<<","<<(*vali++)<<")";
}
*/
cout<<"]";
}
//#define DEBUG_MEM
// Definitions of member operators and functions:
smat::smat(int nr, int nc)
{
nco = nc;
nro = nr;
col = new int * [nr];
val = new scalar * [nr];
#ifdef DEBUG_MEM
cout<<"Constructed an smat with (nr,nc)=("<<nr<<","<<nc<<"), with col="<<col<<", val="<<val<<endl;
#endif
for( int i = 0; i < nr; i++ )
{
col[i] = new int [ 2 ];
val[i] = new scalar [ 1 ];
col[i][1] = col[i][0] = val[i][0] = 0;
}
}
smat::smat(const smat& sm)
{
nco = sm.nco;
nro = sm.nro;
col = new int * [nro];
val = new scalar * [nro];
#ifdef DEBUG_MEM
cout<<"Constructed an smat (copy constructor) with col="<<col<<", val="<<val<<endl;
#endif
for( int i = 0; i < nro; i++ )
{
int d = sm.col[i][0];
col[i] = new int[ d+1 ];
val[i] = new scalar[ d ];
int *pos = col[i], *pi = sm.col[i];
scalar *values = val[i], *vi = sm.val[i];
*pos++ = *pi++;
while (d--) { *values++ = *vi++; *pos++ = *pi++; }
}
}
smat::smat(const mat& m)
{
// cout<<"Converting mat("<<m.nro<<"x"<<m.nco<<") to smat"<<endl;
nco = m.nco;
nro = m.nro;
col = new int * [nro];
val = new scalar * [nro];
#ifdef DEBUG_MEM
cout<<"Constructed an smat (from a mat) with col="<<col<<", val="<<val<<endl;
#endif
int i, j, k, l, p;
for( i = 0; i < nro; i++ )
{
scalar *veci = m.entries + i*nco;
for( j = 0, k = 0; j < nco; j++ ) if( *veci++ ) k++;
col[i] = new int[ k+1 ];
val[i] = new scalar[ k ];
scalar *values = val[i]; int *pos = col[i];
veci = m.entries + i*nco;
*pos++ = k;
for( l = 0, p = 1; l < nco; l++, p++,veci++ )
if( *veci ) { *values++ = *veci; *pos++ = p; }
}
}
smat::~smat()
{
for( int i = 0; i < nro; i++ ) { delete [] col[i]; delete [] val[i]; }
#ifdef DEBUG_MEM
cout<<"Destroying an smat with col="<<col<<", val="<<val<<endl;
#endif
delete [] col;
delete [] val;
}
// member functions and operators
void smat::set_row( int i, int d, int* pos, scalar* values)
{
if( col[i][0] != d ) {
delete [] col[i]; delete [] val[i];
col[i] = new int [d+1];
val[i] = new scalar [d];
col[i][0] = d;
}
for( int j = 0; j < d; j++ ) {
col[i][j+1] = *pos++;
val[i][j] = *values++;
}
}
void smat::setrow ( int i, const svec& v) // i counts from 1
{
int j, d=v.entries.size();
i--;
if( col[i][0] != d ) {
delete [] col[i]; delete [] val[i];
col[i] = new int [d+1];
val[i] = new scalar [d];
col[i][0] = d;
}
map<int,scalar>::const_iterator vi;
for(vi=v.entries.begin(), j=0;
vi!=v.entries.end(); vi++, j++)
{
col[i][j+1] = vi->first;
val[i][j] = vi->second;
}
}
smat smat::select_rows(const vec& rows) const
{
int i,r, n=dim(rows);
smat ans(n,nco);
for(i=0; i<n; i++)
{
r=rows[i+1]-1;
ans.set_row(i,col[r][0],col[r]+1,val[r]);
}
return ans;
}
mat smat::as_mat( ) const
{
// cout<<"Converting smat to mat("<<nro<<"x"<<nco<<")"<<endl;
mat ans( nro, nco );
scalar *mi = ans.entries;
for( int i = 0; i < nro; i++ )
{
int d = *col[i];
scalar *values = val[i];
int *posi = col[i] + 1;
while( d-- )
mi[ i*nco + (*posi++) - 1 ] = *values++;
}
return ans;
}
svec smat::row(int i) const // extract row i as an svec, i counts from 1
{
i--;
svec ans(nco);
int d = *col[i];
scalar *values = val[i];
int *posi = col[i] + 1;
while( d-- )
ans.set( (*posi++), (*values++));
return ans;
}
scalar smat::elem(int i, int j) const /*returns (i,j) entry, 1 <= i <= nro
* can only be used as a rvalue */
{
if( (0<i) && (i<=nro) && (0<j) && (j<=nco) )
{
int d = *col[i-1];
int *posi = col[i-1] + 1;
scalar *veci = val[i-1];
while( d-- )
{
if( j == *posi++ ) return *veci;
veci++;
}
return 0;
}
else
{
cerr << "Bad indices in smat::operator ()\n";
return 0;
}
}
smat& smat::operator=(const smat& sm)
{
if (this==&sm) return *this;
nco = sm.nco;
int i, n = sm.nro;
if (nro != n) // delete old space and replace with new.
{
for( i = 0; i < nro; i++ ) { delete [] col[i]; delete [] val[i]; }
#ifdef DEBUG_MEM
cout<<"in smat.=, destroying old smat with col="<<col<<", val="<<val<<endl;
#endif
delete [] col;
delete [] val;
nro = n;
col = new int * [nro];
val = new scalar * [nro];
#ifdef DEBUG_MEM
cout<<"in smat.=, creating new smat with col="<<col<<", val="<<val<<endl;
#endif
for( i = 0; i < nro; i++ )
{
col[i] = new int [ 2 ];
val[i] = new scalar [ 1 ];
col[i][1] = col[i][0] = val[i][0] = 0;
}
}
for( i = 0; i < nro; i++ )
{
int d = *sm.col[i];
if(d!=col[i][0])
{
delete[]col[i]; delete[]val[i];
col[i] = new int [ d+1 ];
val[i] = new scalar [ d ];
col[i][0]=d;
}
scalar *values = val[i]; int *pos = col[i];
scalar *vi = sm.val[i]; int *pi = sm.col[i];
*pos++ = *pi++;
while (d--) { *values++ = *vi++; *pos++ = *pi++; }
}
return *this;
}
smat& smat::operator+=(const smat& mat2)
{
if (nro==mat2.nro)
{
for(int i = 0; i < nro; i++ )
{
// cout<<"Adding rows ";
// showrow(col[i],val[i]); cout<<" and "; showrow(mat2.col[i],mat2.val[i]);
// cout<<endl;
int d = *col[i], d2 = *mat2.col[i];
int *pos1 = col[i] + 1, *pos2 = mat2.col[i]+1;
scalar *val1 = val[i], *val2 = mat2.val[i];
int *P = new int [ d + d2 + 1 ]; int* Pi=P+1;
scalar *V = new scalar [ d + d2 ]; scalar* Vi=V;
int k = 0; /*k will be # of non-zero entries of sum*/
while( d && d2 )
{
if( *pos1 < *pos2 )
{ *Pi++ = *pos1++; *Vi++ = *val1++; d--; k++; }
else if(*pos2 < *pos1 )
{ *Pi++ = *pos2++; *Vi++ = *val2++; d2--; k++; }
else {
// cout<<"two entries at position "<<(*pos1)<<", "<<(*val1)<<" and "<<(*val2)<<endl;
*Pi = *pos1;
scalar newval = (*val1++) + (*val2++);
// cout<<"sum = "<<newval<<endl;
if( newval!=0 )
{
*Vi=newval;
// cout<<"nonzero, putting "<<(*V)<<" into sum row in position "<<(*Pi)<<endl;
Vi++; Pi++; k++;
}
// else cout<<"zero, omitting from sum row"<<endl;
pos1++; pos2++; d--; d2--;
}
}
// P[0] = k;
// cout<<"intermediate result is ";
// showrow(P,V);
// cout<<endl;
while( d2-- )
{ *Pi++ = *pos2++; *Vi++ = *val2++; k++; }
while( d -- )
{ *Pi++ = *pos1++; *Vi++ = *val1++; k++; }
P[0] = k;
delete [] col[i]; col[i]=P;
delete [] val[i]; val[i]=V;
// cout<<"Result is ";
// showrow(col[i],val[i]);
// cout<<endl;
}
}
else cerr << "Incompatible smatrices in operator +=\n";
return *this;
}
smat& smat::operator-=(const smat& mat2)
{
if (nro==mat2.nro)
{
for(int i = 0; i < nro; i++ )
{
int d = *col[i], d2 = *mat2.col[i];
int *pos1 = col[i] + 1, *pos2 = mat2.col[i]+1;
scalar *val1 = val[i], *val2 = mat2.val[i];
int *P = new int [ d + d2 + 1 ]; int* Pi=P+1;
scalar *V = new scalar [ d + d2 ]; scalar* Vi=V;
int k = 0; /*k will be # of non-zero entries of sum*/
while( d && d2 )
{
if( *pos1 < *pos2 )
{ *Pi++ = *pos1++; *Vi++ = *val1++; d--; k++; }
else if(*pos2 < *pos1 )
{ *Pi++ = *pos2++; *Vi++ = -(*val2++); d2--; k++; }
else {
*Pi = *pos1;
scalar newval = (*val1++) - (*val2++);
if( newval!=0 ) { *Vi++=newval; Pi++; k++; }
pos1++; pos2++; d--; d2--;
}
}
while( d2-- )
{ *Pi++ = *pos2++; *Vi++ = -(*val2++); k++; }
while( d -- )
{ *Pi++ = *pos1++; *Vi++ = *val1++; k++; }
P[0] = k;
delete [] col[i]; col[i]=P;
delete [] val[i]; val[i]=V;
}
}
else cerr << "Incompatible matrices in operator -=\n";
return *this;
}
smat& smat::operator+= (const scalar& scal) // adds scalar*identity
{
if(scal==0) return *this;
int i, d, k;
for(i = 0; i < nro; i++ )
{
d = *col[i]; // length of old row
int *pos1 = col[i] + 1; // pointer to run along position vector
scalar *val1 = val[i]; // pointer to run along value vector
int *P = new int [ d + 2 ]; // new position vector
scalar *V = new scalar [ d + 1 ]; // new value vector
int* Pi=P+1;
scalar* Vi=V;
scalar newval;
k = 0; // k will be # of non-zero entries of new row
while((d)&&(*pos1<(i+1))) // just copy entries
{
*Pi++ = *pos1++; *Vi++ = *val1++; k++; d--;
}
if(d&&(*pos1==(i+1))) // add the scalar, see if it's zero
{
newval = (*val1)+scal;
if( newval!=0) { *Vi++ = newval; *Pi++=*pos1; k++; }
pos1++; val1++; d--;
}
else // insert new entry
{
*Vi++ = scal; *Pi++=(i+1); k++;
}
while(d--) // copy remaining entries if necessary
{
*Pi++ = *pos1++; *Vi++ = *val1++; k++;
}
P[0] = k;
delete [] col[i]; col[i]=P;
delete [] val[i]; val[i]=V;
}
return *this;
}
void smat::sub_mod_p(const scalar& lambda, const scalar& p)
// subtracts scalar*identity mod p
{
this->operator-=(lambda);
this->reduce_mod_p(p);
}
void smat::reduce_mod_p(const scalar& p)
{
svec rowi;
for(int i=1; i<=nro; i++)
{
rowi = row(i);
rowi.reduce_mod_p(p);
setrow(i,rowi);
}
}
smat& smat::operator*=(scalar scal)
{
if(scal==0) cerr<<"Attempt to multiply smat by 0\n"<<endl;
int i, d; scalar *veci;
for( i = 0; i < nro; i++)
{
d = *col[i];
veci = val[i];
while(d--) (*veci++) *= scal;
}
return *this;
}
smat& smat::mult_by_scalar_mod_p (scalar scal, const scalar& p)
{
if(xmod(scal,p)==0) cerr<<"Attempt to multiply smat by 0\n"<<endl;
int i, d; scalar *veci;
for( i = 0; i < nro; i++)
{
d = *col[i];
veci = val[i];
while(d--) {(*veci) = xmodmul(*veci,scal,p); veci++;}
}
return *this;
}
smat& smat::operator/=(scalar scal)
{
if(scal==0) cerr<<"Attempt to divide smat by 0\n"<<endl;
int i, d; scalar *veci;
for( i = 0; i < nro; i++)
{
d = *col[i];
veci = val[i];
while(d--) (*veci++) /= scal;
}
return *this;
}
mat smat::operator*( const mat& m )
{
if( nco != m.nrows() )
{
cerr << "incompatible smat & mat in operator*\n";
abort();
}
mat product( nro, m.ncols() );
int i, j, d, t;
scalar ans;
for( i = 1; i <= nro; i++ )
{
d = col[i-1][0];
for( j = 1; j <= m.ncols(); j++ )
{
ans = 0;
for( t = 0; t < d; t++ ) ans += val[i-1][t]*m(col[i-1][t+1],j);
product(i,j) = ans;
}
}
return product;
}
long smat::nullity(const scalar& lambda, scalar mod) // nullity of this-lambda*I
{
smat sma(*this); sma-=lambda; return sma.ncols()-sma.rank(mod);
}
// Definitions of non-member, friend operators and functions
svec operator* ( const smat& A, const svec& v )
{
if( A.nco != dim(v) )
{
cout << "incompatible smat*svec\n";
cout << "Dimensions "<<dim(A)<<" and "<<dim(v)<<endl;
abort();
}
int n = A.nro, j; scalar s;
svec prod(n);
for(j = 1; j<=n; j++)
{
s = (A.row(j))*v;
if(s) prod.entries[j]=s;
}
return prod;
}
vec operator* (smat& m, const vec& v)
{
int r = m.nrows(), c=m.ncols();
if(c!=dim(v))
{
cout<<"Error in smat*vec: wrong dimensions ("<<r<<"x"<<c<<")*"<<dim(v)<<endl;
abort();
}
vec w(r);
for(int i=1; i<=r; i++) w.set(i,m.row(i)*v);
return w;
}
// (col) svec * smat
svec operator* ( const svec& v, const smat& A )
{
if( v.d != A.nrows() )
{
cout << "incompatible sizes in v*A\n";
cout << "Dimensions "<<v.d<<" and "<<dim(A)<<endl;
abort();
}
svec prod(A.ncols());
map<int,scalar>::const_iterator vi;
for(vi=v.entries.begin(); vi!=v.entries.end(); vi++)
prod += (vi->second)*(A.row(vi->first));
return prod;
}
#if(0)
svec mult_mod_p( const svec& v, const smat& A, const scalar& p )
{
if( v.d != A.nrows() )
{
cout << "incompatible sizes in v*A\n";
cout << "Dimensions "<<v.d<<" and "<<dim(A)<<endl;
abort();
}
svec prod(A.ncols());
map<int,scalar>::const_iterator vi;
for(vi=v.entries.begin(); vi!=v.entries.end(); vi++)
prod.add_scalar_times_mod_p(A.row(vi->first), vi->second,p);
return prod;
}
#else
svec mult_mod_p( const svec& v, const smat& A, const scalar& p )
{
if( v.d != A.nrows() )
{
cout << "incompatible sizes in v*A\n";
cout << "Dimensions "<<v.d<<" and "<<dim(A)<<endl;
abort();
}
vec prod(A.ncols());
map<int,scalar>::const_iterator vi;
for(vi=v.entries.begin(); vi!=v.entries.end(); vi++)
{
// prod.add_scalar_times_mod_p(A.row(vi->first), vi->second,p);
int i = (vi->first)-1; // the row of A to use (from 0)
scalar c = vi->second; // the coefficient tomultiply it by
int d = A.col[i][0]; // #nonzero entries in this row
int *posi = A.col[i] +1; // pointer to array of columns
scalar *values = A.val[i]; // pointer to array of values
while (d--)
prod.add_modp(*posi++,xmodmul(c,*values++,p),p);
}
return svec(prod);
}
#endif
svec mult_mod_p( const smat& A, const svec& v, const scalar& p )
{
if( v.d != A.ncols() )
{
cout << "incompatible sizes in A*v\n";
cout << "Dimensions "<<dim(A)<<" and "<<v.d<<endl;
abort();
}
svec w(A.nrows());
int i;
for(i=1; i<=A.nrows(); i++)
w.set(i,dotmodp(A.row(i),v,p));
return w;
}
vec mult_mod_p( const smat& A, const vec& v, const scalar& p )
{
if( dim(v) != A.ncols() )
{
cout << "incompatible sizes in A*v\n";
cout << "Dimensions "<<dim(A)<<" and "<<dim(v)<<endl;
abort();
}
vec w(A.nrows());
int i;
for(i=1; i<=A.nrows(); i++)
w.set(i,dotmodp(A.row(i),v,p));
return w;
}
smat operator* ( const smat& A, const smat& B )
{
if( A.nco != B.nro ) { cerr << "incompatible smats in operator *\n"; abort();}
int nro = A.nro, nco = B.nco;
smat prod( nro, nco );
for (int i=1; i<=nro; i++)
prod.setrow(i, A.row(i)*B);
return prod;
}
smat mult_mod_p ( const smat& A, const smat& B, const scalar& p )
{
if( A.nco != B.nro ) { cerr << "incompatible smats in operator *\n"; abort();}
int nro = A.nro, nco = B.nco;
smat prod( nro, nco );
for (int i=1; i<=nro; i++)
prod.setrow(i, mult_mod_p(A.row(i),B,p));
return prod;
}
smat transpose ( const smat& A )
{
// 1. Count the number of entries in each column (as in operator*() below):
int *colwts = new int[A.nco];
int i, r;
for(i=0; i<A.nco; i++) colwts[i]=0;
for( r = 0; r <A.nro; r++ ) // counts # of elements in each col
{
int d = *A.col[r];
int *p = A.col[r] + 1;
while( d-- ) colwts[*p++ - 1]++;
}
#if(0)
cout<<"Column weights of A:\n";
for(i=0; i<A.nco; i++) cout<<colwts[i]<<" ";
cout<<endl;
#endif
// 2. Make space for the output matrix:
smat B(A.nco,A.nro);
// Remove the default entries in B:
for( int i = 0; i < B.nro; i++ ) { delete [] B.col[i]; delete [] B.val[i]; }
// Replace with the correct sizes:
for( i = 0; i < B.nro; i++ )
{
int d = colwts[i];
B.col[i] = new int[ d+1 ];
B.val[i] = new scalar[ d ];
B.col[i][0] = d;
}
delete[]colwts;
//3. Copy entries over. aux[i] holds the number of entries so far
// put into row i of the transpose
int * aux = new int [B.nro];
int *a=aux;
for( r = 0; r < B.nro; r++ ) *a++ = 0;
for( r = 0; r < A.nro; r++ ) {
int d = *A.col[r];
// cout<<"row "<<r<<" of A has "<<d<<" entries\n";
scalar *v = A.val[r];
int *p = A.col[r] + 1;
while( d-- ) {
int c = *p++ - 1;
B.col[c][aux[c]+1] = r+1;
B.val[c][aux[c]] = *v++;
aux[c]++;
}
#if(0)
cout<<"After processing that row, aux = \n";
for(i=0; i<A.nco; i++) cout<<aux[i]<<" ";
cout<<endl;
#endif
}
delete[]aux;
return B;
}
int operator==(const smat& sm1, const smat& sm2)
{
int nr = sm1.nro, i;
int equal = ( nr == sm2.nro );
if(!equal) return 0;
for( i = 0; i < nr && equal; i++ )
{
int d1 = *sm1.col[i], d2 = *sm2.col[i];
if( d1 != d2 ) {return 0;}
scalar *sm1val = sm1.val[i], *sm2val= sm2.val[i];
int *sm1pos= sm1.col[i] + 1;
int *sm2pos = sm2.col[i] + 1;
while (equal && d1--) equal = ((*sm1val++)==(*sm2val++));
while (equal && d2--) equal = ((*sm1pos++)==(*sm2pos++));
}
return equal;
}
int eqmodp(const smat& sm1, const smat& sm2, const scalar& p)
{
int nr = sm1.nro, i;
int equal = ( nr == sm2.nro );
if(!equal) return 0;
for( i = 0; i < nr && equal; i++ )
{
int d1 = *sm1.col[i], d2 = *sm2.col[i];
if( d1!=d2 ) {return 0;}
scalar *sm1val = sm1.val[i], *sm2val= sm2.val[i];
int *sm1pos= sm1.col[i] + 1;
int *sm2pos = sm2.col[i] + 1;
while (equal && d2--) equal = ((*sm1pos++)==(*sm2pos++));
while (equal && d1--) equal = (xmod((*sm1val++)-(*sm2val++),p)==0);
}
return equal;
}
ostream& operator << (ostream& s, const smat& sm)
{
for( int i = 0; i < sm.nro; i++ )
{
cout << "row[" << i+1 << "] =";
int d = *sm.col[i];
int *posi = sm.col[i] + 1; scalar *veci = sm.val[i];
int n = d-1 > 0 ? d-1 : 0;
s << "{ ";
s << "values " << "[";
if( d > 0 ) s << *veci++;
while ( n-- ) s << "," << (*veci++);
s << "]";
s << " positions: " << "[";
if( d > 0 ) { s << *posi++; d = d-1; }
while ( d-- ) { s << "," << (*posi++); }
s << "] }" << endl;
}
return s;
}
istream& operator >> (istream& s, smat& sm)
{
int *pos = new int [ sm.nco ];
scalar *values = new scalar [ sm.nco ];
int r, k, count;
for( r = 0; r < sm.nro; r++ )
{
cout << "input row " << r+1 << endl;
int *p = pos; scalar *v = values;
s >> k;
for( count = 0; k != 0; s >> k )
{
*v++ = k;
s >> k;
if( k ) *p++ = k;
else { cerr << "enter zero as a value!!!\n"; abort(); }
count++;
}
delete [] sm.col[r];
delete [] sm.val[r];
sm.col[r] = new int [ count + 1 ];
sm.val[r] = new scalar [ count ];
sm.col[r][0] = count;
p = pos;
v = values;
for( k = 0; k < count; k++ )
{ sm.col[r][k+1] = *p++; sm.val[r][k] = *v++; }
}
delete [] pos;
delete [] values;
return s;
}
// Definition of non-friend functions
smat operator+(const smat& sm)
{
return sm;
}
smat operator-(const smat& sm)
{
return (-1)*sm;
}
smat operator+(const smat& sm1, const smat& sm2)
{
smat ans(sm1); ans+=sm2; return ans;
}
smat operator-(const smat& sm1, const smat& sm2)
{
smat ans(sm1); ans-=sm2; return ans;
}
smat operator*(scalar scal, const smat& sm)
{
smat ans(sm); ans*=scal; return ans;
}
smat operator/(const smat& sm, scalar scal)
{
smat ans(sm); ans/=scal; return ans;
}
int operator!=(const smat& sm1, const smat& sm2)
{
return !(sm1==sm2);
}
int get_population(const smat& m )
{
int r,d,count = 0;
for( r = 0; r < m.nro; r++ )
{
d = *(m.col[r]);
if(d==0) continue;
int *pos = m.col[r] + 1;
while( d-- ) { count += ( *pos++ != 0 );}
}
return count;
}
smat sidmat(scalar n) // identity matrix
{
smat I(n,n); // creates enough space
for( int i = 0; i < n; i++ )
{
I.col[i][0] = 1; // one entry in this row
I.col[i][1] = i+1; // ...it's in column i+1
I.val[i][0] = 1; // ...its value is 1
}
return I;
}
int liftmat(const smat& mm, scalar pr, smat& m, scalar& dd, int trace)
{
scalar modulus=pr,n,d; long nr,nc; dd=1;
int succ=0,success=1;
float lim=floor(sqrt(pr/2.0));
m = mm;
if(trace)
{
cout << "Lifting mod-p smat; smat mod "<<pr<<" is:\n";
cout << m.as_mat();
cout << "Now lifting back to Q.\n";
cout << "lim = " << lim << "\n";
}
for(nr=0; nr<m.nro; nr++)
for(nc=0; nc<m.col[nr][0]; nc++)
{
succ = modrat(m.val[nr][nc],modulus,lim,n,d);
success = success && succ;
dd=lcm(d,dd);
}
if(!success)
{
//cout << "Problems encountered with modrat lifting of smat." << endl;
return 0;
}
dd=abs(dd);
if(trace) cout << "Common denominator = " << dd << "\n";
for(nr=0; nr<m.nro; nr++)
for(nc=0; nc<m.col[nr][0]; nc++)
m.val[nr][nc] = mod(xmodmul(dd,(m.val[nr][nc]),pr),pr);
if(trace) cout << "Lifted smat = " << m.as_mat() << "\n";
return 1;
}
//#define DEBUG_CHINESE
int liftmats_chinese(const smat& m1, scalar pr1, const smat& m2, scalar pr2,
smat& m, scalar& dd)
{
long modulus=(long)pr1*(long)pr2,n,d,mij;
long nr,nc,u,v;
float lim=floor(sqrt(modulus/2.0));
dd = bezout(pr1,pr2,u,v); //==1
if (dd!=1) return 0;
// First time through: compute CRTs, common denominator and success flag
m = m1; // NB We assume that m1 and m2 have nonzero entries in the same places
for(nr=0; nr<m1.nro; nr++)
for(nc=0; nc<m1.col[nr][0]; nc++)
{
mij = mod(v*m1.val[nr][nc],pr1)*pr2 + mod(u*m2.val[nr][nc],pr2)*pr1;
mij = mod(mij,modulus);
#ifdef DEBUG_CHINESE
if (((mij-m1.val[nr][nc])%pr1)||((mij-m2.val[nr][nc])%pr2))
{
cout<< "bad CRT(["<<m1.val[nr][nc]<<","<<m2.val[nr][nc]<<"],["<<pr1<<","<<pr2<<"]) = "<<mij<<endl;
}
#endif
m.val[nr][nc] = mij;
if (modrat(mij,modulus,lim,n,d))
dd=lcm(d,dd);
else
{
#ifdef DEBUG_CHINESE
cout<<"CRT("<<m1.val[nr][nc]<<","<<m2.val[nr][nc]<<")="<<mij<<" (mod "<<modulus<<") fails to lift (lim="<<lim<<")\n";
cout << "Problems encountered in chinese lifting of smat modulo "<<pr1<<" and "<<pr2<< endl;
#endif
return 0;
}
}
dd=abs(dd);
#ifdef DEBUG_CHINESE
cout << "Common denominator = " << dd << "\n";
#endif
// Second time through: rescale
for(nr=0; nr<m.nro; nr++)
for(nc=0; nc<m.col[nr][0]; nc++)
{
m.val[nr][nc] = mod(xmodmul((dd/d),(long)m.val[nr][nc],modulus),modulus);
}
return 1;
}
// Possible FLINT_LEVEL values are as follows.
//
// 0: no FLINT support (or a version <2.3)
// 1: support for 64-bit nmod_mat (standard from version 2.3)
// 2: support for 32-bit hmod_mat (non-standard, from version 2.3)
//
// The configure script should have detected whether the functions
// nmod_mat_rref and/or hmod_mat_rref are available to be used here.
//
#if FLINT_LEVEL!=0
//#define TRACE_FLINT_RREF
#include "flint/fmpz.h"
#if (SCALAR_OPTION==1)&&(FLINT_LEVEL==2)
#include "flint/hmod_mat.h"
#undef uscalar
#undef mod_mat
#undef mod_mat_init
#undef mod_mat_clear
#undef mod_mat_entry
#undef mod_mat_nrows
#undef mod_mat_ncols
#undef mod_mat_rref
#undef mod_mat_mul
#define uscalar hlimb_t // unsigned int
#define mod_mat hmod_mat_t // uses unsigned ints
#define mod_mat_init hmod_mat_init
#define mod_mat_clear hmod_mat_clear
#define mod_mat_entry hmod_mat_entry
#define mod_mat_nrows hmod_mat_nrows
#define mod_mat_ncols hmod_mat_ncols
#define mod_mat_rref hmod_mat_rref
#define mod_mat_mul hmod_mat_mul
#else
#include "flint/nmod_mat.h"
#undef uscalar
#undef mod_mat
#undef mod_mat_init
#undef mod_mat_clear
#undef mod_mat_entry
#undef mod_mat_nrows
#undef mod_mat_ncols
#undef mod_mat_rref
#undef mod_mat_mul
#define uscalar mp_limb_t // unsigned long
#define mod_mat nmod_mat_t // uses unsigned longs
#define mod_mat_init nmod_mat_init
#define mod_mat_clear nmod_mat_clear
#define mod_mat_entry nmod_mat_entry
#define mod_mat_nrows nmod_mat_nrows
#define mod_mat_ncols nmod_mat_ncols
#define mod_mat_rref nmod_mat_rref
#define mod_mat_mul nmod_mat_mul
#endif
#include "flint/profiler.h"
#include "eclib/timer.h"
// FLINT has two types for modular matrices: standard in FLINT-2.3 has
// nmod_mat_t with entries of type mp_limb_t (unsigned long);
// non-standard (in an optional branch) is hmod_mat_t, with entries
// hlimb_t (unsigned int). We use the former when scalar=long and the
// latter when scalar=int, provided that the optional functions are
// present, which should have been determined by the configure script.
// The unsigned scalar types are #define'd as uscalar.
void mod_mat_from_smat(mod_mat& A, const smat& M, scalar pr)
{
long nr=M.nrows(), nc=M.ncols();
long i, j;
// copy of the modulus for FLINT
uscalar mod = (uscalar)pr;
// create flint matrix copy of M:
mod_mat_init(A, nr, nc, mod);
for(i=0; i<nr; i++)
for(j=0; j<nc; j++)
mod_mat_entry(A,i,j) = (uscalar)posmod(M.elem(i+1,j+1),pr);
}
smat smat_from_mod_mat(const mod_mat& A, const scalar& p) //scalar just to fix return type
{
long nr=mod_mat_nrows(A), nc=mod_mat_ncols(A);
// create matrix copy of A:
smat M(nr, nc);
long i, j;
for(i=0; i<nr; i++)
{
svec rowi(nc);
for(j=0; j<nc; j++)
rowi.set(j+1, mod_mat_entry(A,i,j));
M.setrow(i+1,rowi);
}
return M;
}
smat mult_mod_p_flint ( const smat& A, const smat& B, const scalar& pr )
{
if( A.ncols() != B.nrows() )
{
cerr << "incompatible smats in operator *\n";
abort();
}
mod_mat AA, BB, CC;
mod_mat_from_smat(AA,A,pr);
mod_mat_from_smat(BB,B,pr);
mod_mat_init(CC, A.nrows(), B.ncols(), pr);
// timer T;
// T.start();
// mod_mat_mul(CC,AA,BB);
// T.stop();
// cout<<"mult_mod_p_flint time (size "<<dim(A)<<"x"<<dim(B)<<"): ";
// T.show();
smat C = smat_from_mod_mat(CC, pr);
mod_mat_clear(AA);
mod_mat_clear(BB);
mod_mat_clear(CC);
return C;
}
#endif
|