1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// sub.cc: implementation of subspace class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// Only to be included by subspace.cc
// Inline definitions of member operators and functions:
subspace::subspace(int n)
:denom(1),pivots(iota((scalar)n)),basis(idmat((scalar)n))
{}
subspace::subspace(const mat& b, const vec& p, scalar d)
:denom(d),pivots(p),basis(b)
{}
subspace::subspace(const subspace& s)
:denom(s.denom),pivots(s.pivots),basis(s.basis)
{}
// destructor -- no need to do anything as componenets have their own
subspace::~subspace()
{}
// assignment
void subspace::operator=(const subspace& s)
{
pivots=s.pivots;
basis=s.basis;
denom=s.denom;
}
// Definitions of nonmember, nonfriend operators and functions:
subspace combine(const subspace& s1, const subspace& s2)
{
scalar d = s1.denom * s2.denom;
const mat& b1=s1.basis, b2=s2.basis;
int nr = b1.nro, nc = b2.nco;
mat b = b1*b2;
scalar g=0; long n=nr*nc; scalar* bp=b.entries;
while ((n--)&&(g!=1)) g=gcd(g,*bp++);
if(g>1)
{
d/=g; bp=b.entries; n=nr*nc; while(n--) (*bp++)/=g;
}
vec p = s1.pivots[s2.pivots];
return subspace(b,p,d);
}
//Don't think the following is ever actually used...
mat expressvectors(const mat& m, const subspace& s)
{ vec p = pivots(s);
long n = dim(s);
mat ans(n,m.ncols());
for (int i=1; i<=n; i++) ans.setrow(i, m.row(p[i]));
return ans;
}
//This one is used a LOT
mat restrict_mat(const mat& m, const subspace& s, int cr)
{ long i,j,k,d = dim(s), n=m.nro;
if(d==n) return m; // trivial special case, s is whole space
scalar dd = s.denom;
mat ans(d,d);
const mat& sb = s.basis;
scalar *ap, *a=m.entries, *b=sb.entries, *bp, *c=ans.entries, *cp, *pv=s.pivots.entries;
for(i=0; i<d; i++)
{
bp=b; k=n; ap=a+n*(pv[i]-1);
while(k--)
{
cp=c; j=d;
while(j--)
{
*cp++ += *ap * *bp++;
}
ap++;
}
c += d;
}
// N.B. The following check is strictly unnecessary and slows it down,
// but is advisable!
if(cr) {
// int check = 1, n = b.nrows();
// for (i=1; (i<=n) && check; i++)
// for (j=1; (j<=d) && check; j++)
// check = (dd*m.row(i)*b.col(j) == b.row(i)*ans.col(j));
int check = (dd*matmulmodp(m,sb,DEFAULT_MODULUS) == matmulmodp(sb,ans,DEFAULT_MODULUS));
if (!check)
{
cout<<"Error in restrict_mat: subspace not invariant!\n";
abort();
}
}
return ans;
}
subspace kernel(const mat& m1, int method)
{
long rank, nullity, n, r, i, j;
scalar d;
vec pcols,npcols;
mat m = echelon(m1,pcols,npcols, rank, nullity, d, method);
int dim = m.ncols();
mat basis(dim,nullity);
for (n=1; n<=nullity; n++) basis.set(npcols[n],n,d);
for (r=1; r<=rank; r++)
{ i = pcols[r];
for (j=1; j<=nullity; j++) basis.set(i,j, -m(r,npcols[j]));
}
subspace ans(basis, npcols, d);
return ans;
}
subspace image(const mat& m, int method)
{
vec p,np;
long rank, nullity;
scalar d;
mat b = transpose(echelon(transpose(m),p,np,rank,nullity,d,method));
subspace ans(b,p,d);
return ans;
}
subspace eigenspace(const mat& m1, scalar lambda, int method)
{
mat m = addscalar(m1,-lambda);
subspace ans = kernel(m,method);
return ans;
}
subspace subeigenspace(const mat& m1, scalar l, const subspace& s, int method)
{
mat m = restrict_mat(m1,s);
subspace ss = eigenspace(m, l*(denom(s)),method);
subspace ans = combine(s,ss );
return ans;
}
subspace pcombine(const subspace& s1, const subspace& s2, scalar pr)
{
scalar d = s1.denom * s2.denom; // redundant since both should be 1
const mat& b1=s1.basis, b2=s2.basis;
const mat& b = matmulmodp(b1,b2,pr);
const vec& p = s1.pivots[s2.pivots];
return subspace(b,p,d);
}
mat prestrict(const mat& m, const subspace& s, scalar pr, int cr)
{ int i,j,k,d = dim(s), n=m.nro;
if(d==n) return m; // trivial special case, s is whole space
scalar dd = s.denom; // will be 1 if s is a mod-p subspace
mat ans(d,d);
const mat& sb = s.basis;
scalar *ap, *a=m.entries, *b=sb.entries, *bp, *c=ans.entries, *cp, *pv=s.pivots.entries;
for(i=0; i<d; i++)
{
bp=b; k=n; ap=a+n*(pv[i]-1);
while(k--)
{
cp=c; j=d;
while(j--)
{
*cp += xmodmul(*ap , *bp++, pr);
*cp = xmod(*cp, pr);
cp++;
}
ap++;
}
cp=c; j=d;
while(j--)
{
*cp = mod(*cp,pr);
cp++;
}
c += d;
}
if(cr) {
const mat& left = dd*matmulmodp(m,sb,pr);
const mat& right = matmulmodp(sb,ans,pr);
int check = (left==right);
if (!check)
{
cout<<"Error in prestrict: subspace not invariant!\n";
}
}
return ans;
}
subspace oldpkernel(const mat& m1, scalar pr) // using full echmodp
{
long rank, nullity, n, r, i, j;
vec pcols,npcols;
mat m = echmodp(m1,pcols,npcols, rank, nullity, pr);
int dim = m.ncols();
mat basis(dim,nullity);
for (n=1; n<=nullity; n++) basis.set(npcols[n],n,1);
for (r=1; r<=rank; r++)
{ i = pcols[r];
for (j=1; j<=nullity; j++) basis.set(i,j, mod(-m(r,npcols[j]),pr));
}
subspace ans(basis, npcols, 1);
return ans;
}
// using echmodp_uptri, with no back-substitution
subspace pkernel(const mat& m1, scalar pr)
{
long rank, nullity, i, j, jj, t, tt;
vec pcols,npcols;
mat m = echmodp_uptri(m1,pcols,npcols, rank, nullity, pr);
int dim = m.ncols();
mat basis(dim,nullity);
for(j=nullity; j>0; j--)
{
jj = npcols[j];
basis(jj,j) = 1;
for(i=rank; i>0; i--)
{
scalar temp = -m(i,jj);
for(t=rank; t>i; t--)
{
tt=pcols[t];
temp -= xmodmul(m(i,tt),basis(tt,j),pr);
temp = xmod(temp,pr);
}
basis(pcols[i],j) = mod(temp,pr);
}
}
subspace ans(basis, npcols, 1);
return ans;
}
subspace pimage(const mat& m, scalar pr)
{
vec p,np;
long rank, nullity;
const mat& b = transpose(echmodp(transpose(m),p,np,rank,nullity,pr));
subspace ans(b,p,1);
return ans;
}
subspace peigenspace(const mat& m1, scalar lambda, scalar pr)
{
const mat& m = addscalar(m1,-lambda);
subspace ans = pkernel(m,pr);
return ans;
}
subspace psubeigenspace(const mat& m1, scalar l, const subspace& s, scalar pr)
{
const mat& m = prestrict(m1,s,pr);
const subspace& ss = peigenspace(m, l*(denom(s)),pr);
subspace ans = pcombine(s,ss,pr);
return ans;
}
//Attempts to lift from a mod-p subspace to a normal Q-subspace by expressing
//basis as rational using modrat and clearing denominators
//
int lift(const subspace& s, scalar pr, subspace& ans, int trace)
{
scalar dd;
mat m;
if (liftmat(s.basis,pr,m,dd,trace))
{
ans = subspace(m, pivots(s), dd);
return 1;
}
return 0;
}
|