1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
Verbose? Enter quartic coefficients a,b,c,d,e ?
Limit on height? I = -26356388845395184406350565808061369918064, J = -352166609661875954997390187329873130323434589147579770870730368
Minimal model for Jacobian: [1,0,1,34318214642441646362435632562579908747,3184376895814127197244886284686214848599453811643486936756]
Checking local solublity in R:
Checking local solublity at primes [ 2 3 5 7 11 17 67 89 139 211 281 431 443 577 647 977 1613 3863 10567 11923 15361 73277 ]:
Everywhere locally soluble.
Searching for points on (-76507605796482039669,0,334447602052445326228,0,150542317465449993216) up to height 6
(x:y:z) = (-4:456379274456:5)
Point = [2717410306797994865322390215100882986749083600480:31945036659247177505290259298595196252256878326866123825847:541269629646463252964269919701]
height = 43.74623851
Curve = [1,0,1,34318214642441646362435632562579908747,3184376895814127197244886284686214848599453811643486936756]
Point = [2717410306797994865322390215100882986749083600480:31945036659247177505290259298595196252256878326866123825847:541269629646463252964269919701]
height = 43.74623851
Enter quartic coefficients a,b,c,d,e ?
|