1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// d2.cc: program for 2nd descent from a phi-descent homogeneous space
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/marith.h>
#include <eclib/unimod.h>
#include <eclib/points.h>
#include <eclib/mquartic.h>
#include <eclib/transform.h>
#include <eclib/msoluble.h>
#include <eclib/qc.h>
#include <eclib/quadratic.h>
#include <eclib/conic.h>
#include <eclib/minim.h>
#include <eclib/reduce.h>
#include <eclib/sqfdiv.h>
#include <eclib/desc2.h>
bigcomplex roots[4];
int getquartic(quartic& g); // special version for a*x^4+c*x^2+e quartics
int main()
{
#ifdef NTL_ALL
set_precision("Enter number of decimal places");
#endif
cin.flags( cin.flags() | ios::dec ); //force decimal input (bug fix)
bigint zero; zero=0;
int alldesc=0, verb=0, selmer_only=0;
cout << "Verbose? "; cin >> verb;
initprimes("PRIMES",0);
double hlim=8;
cout << "Limit on height? "; cin >> hlim;
cout << "Stop after first point found? "; cin >> alldesc; alldesc=1-alldesc;
cout << "Selmer only (0/1: if 1, just tests whether second descent possible)? ";
cin >> selmer_only;
quartic g;
while (getquartic(g))
{
bigint I = g.getI(), J=g.getJ();
Curvedata IJ_curve(zero,zero,zero,-27*I,-27*J,0);
bigint tr_u,tr_r,tr_s,tr_t;
Curvedata E = IJ_curve.minimalize(tr_u,tr_r,tr_s,tr_t);
bigint d1=g.geta(), c=g.getcc(), d2=g.gete();
bigint d = d1*d2, cdash = -2*c, ddash = sqr(c)-4*d;
vector<bigint> plist = pdivs(6*d*ddash);
vector<bigint> supp = support(ddash);
long mask=0;
Curvedata E_cd(zero,c,zero,d,zero);
cout << "cd-curve (nearer):\t" << (Curve)E_cd << endl;
Curvedata E_cd_dash(zero,cdash,zero,ddash,zero);
cout << "cd-dash-curve (further):\t" << (Curve)E_cd_dash << endl;
Point P(&E_cd);
Point Q(&E_cd_dash);
cout << "I = " << I << ", J = " << J << "\n";
cout << "Minimal model for Jacobian: " << (Curve)E << endl;
cout << "Checking local solublity at primes " << plist << ":\n";
int i, els, els1; bigint two; two=2;
els = els1 = qpsoluble(g,two);
if(!els1) cout << "Not locally soluble at p = 2\n";
for (i=1; i<plist.size(); i++)
{
els1=new_qpsoluble(g,plist[i]);
if(!els1) cout << "Not locally soluble at p = "<<plist[i]<<"\n";
els = els&els1;
}
if(!els) continue;
cout << "Everywhere locally soluble.\n";
cout<<"------------------------------------------\n";
bigint x,y,z,x2,xz,z2;
int res = desc2(c,d1,d2,plist,supp,supp,mask,hlim,x,y,z,verb,selmer_only,alldesc);
cout << "\nRESULTS\n\n";
switch(res)
{
case 1:
cout<<"Quartic has rational point "; show_xyz(x,y,z);cout<<endl;
xz=x*z; x2=x*x; z2=z*z;
P = Point(&E_cd, d1*x2*z, d1*x*y, z*z2);
cout << "Point on (c,d) curve = " << P << "\n";
cout << "height = " << height(P)<< "\n";
Q = Point(&E_cd_dash,y*y*xz,y*(d1*x2*x2-d2*z2*z2),pow(xz,3));
cout << "Point on (c',d') curve = " << Q << "\n";
cout << "height = " << height(Q)<< "\n\n";
break;
case -1:
cout<<"Quartic has no rational point (no ELS descendents)\n\n";
break;
case 0:
default:
cout<<"Undecided: quartic has ELS descendents but no rational\n";
cout<<"points were found on any.\n\n";
}
}
}
int getquartic(quartic& g) // special version for a*x^4+c*x^2+e quartics
{
bigint a, b, c, d, e;
cout << "Enter quartic coefficients (a,0,c,0,e) or just a c e " << endl;
char ch; cin>>ch;
if(ch=='(') cin>>a>>ch>>b>>ch>>c>>ch>>d>>ch>>e>>ch;
else
{
cin.putback(ch);
cin >> a >> c >> e;
b=0; d=0;
}
if (sign(a)==0) return 0;
g=quartic(a,b,c,d,e);
return 1;
}
|