1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
// minim.h: implementation of quartic minimization functions
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/mquartic.h>
#include <eclib/transform.h>
#include <eclib/minim.h>
//#define DEBUG_MINIM
bigint root_p(const bigint& a, const bigint& b, const bigint& c,
const bigint& d, const bigint& e, const bigint& p)
// assuming p|I, p|J, returns the unique alpha mod p
// modulo which quartic has a root of multiplicity at least 3
// returns -1 if multiple root is at infinity (if a=b=0 mod p)
// (program does not actaully use this dubious feature)
{
if(div(p,a)&&div(p,b)) return BIGINT(-1);
if(div(p,e)&&div(p,d)) return BIGINT(0);
// Now we have to find the multiple root, using invariant theory:
if(p==2)
{
return BIGINT(1); // the only other possibility
}
if(p==3)
{
if(div(p,a)) return mod(-b*e,p);
else return mod(-a*d,p);
}
bigint b2=sqr(b);
bigint ac=a*c;
bigint p_seminv = mod(3*b2-8*ac,p);
if(is_zero(p_seminv)) // quadruple root
{
return mod(-b*invmod(4*a,p),p);
}
else // triple root only
{
if(div(p,a)) // fourth root is at infinity
{
return mod(c*invmod(3*b,p),p);
}
bigint t=invmod(4*a*p_seminv,p);
bigint r_seminv = b*b2+8*sqr(a)*d-4*ac*b;
bigint alpha = mod((3*r_seminv-b*p_seminv)*t,p);
return alpha;
}
}
int minim_p(bigint& a, bigint& b, bigint& c,
bigint& d, bigint& e, const bigint& p,
scaled_unimod& m)
// assuming p^4|I, p^6|J, (or stronger conditions when p=2 or p=3)
// returns an equivalent quartic with invariants divided by p^4, p^6;
// m holds the transformation matrix, must be initialized (say with identity)
// returns success, can be 0 only for p=2
{
bigint a0,b0,c0,d0,e0,r;
bigint p2=sqr(p), temp;
int two = (p==2);
int three = (p==3);
// First test for trivial case where p^2 divides all coeffs:
int p2divall=::divides(a,p2,a0,r);
if(p2divall) {p2divall=::divides(b,p2,b0,r);}
if(p2divall) {p2divall=::divides(c,p2,c0,r);}
if(p2divall) {p2divall=::divides(d,p2,d0,r);}
if(p2divall) {p2divall=::divides(e,p2,e0,r);}
if(p2divall) // trivial case, all coeffs divisible by p^2
{
#ifdef DEBUG_MINIM
cout<<"All coeffs divisible by p\n";
#endif
a=a0; b=b0; c=c0; d=d0; e=e0;
m.u_scale(p);
return 1;
}
// Next test for case where p divides all coeffs:
int pdivall=::divides(a,p,a0,r);
if(pdivall) { pdivall=::divides(b,p,b0,r);}
if(pdivall) { pdivall=::divides(c,p,c0,r);}
if(pdivall) { pdivall=::divides(d,p,d0,r);}
if(pdivall) { pdivall=::divides(e,p,e0,r);}
if(pdivall) // Case where all coeffs are divisible by p
// a0 etc hold coeffs/p
{
#ifdef DEBUG_MINIM
cout<<"All coeffs divisible by "<<p<<endl;
#endif
if(div(p,a0)&&div(p,b0)) // mult root is at infty move to 0
{
m_invert(a,b,c,d,e,m);
#ifdef DEBUG_MINIM
cout<<"Multiple root is at infinity, reversing coeffs\n";
#endif
}
else
{
if(ndiv(p,e0)||ndiv(p,d0)) // mult root is finite and not zero
// find it and shift it to 0
{
bigint alpha = root_p(a0,b0,c0,d0,e0,p);
#ifdef DEBUG_MINIM
cout<<"Multiple root is at "<<alpha<<" mod "<<p<<"\n";
cout<<"Shifting to 0...\n";
#endif
xshift(alpha,a,b,c,d,e,m);
if(ndiv(p2,e)||ndiv(p2,d)||ndiv(p2,c))
{
cout<<"Error in c, d, e\n";
cout<<"root_p("<<a0<<","<<b0<<","<<c0<<","<<d0<<","<<e0<<","<<p<<") returns "<<alpha<<endl;
}
}
}
// if ndiv(p2,b) must now shift second root to infty
divide_exact(b,p,b0); // b0=b/p;
if(ndiv(p2,a)&&ndiv(p,b0))
{
bigint gamma = mod(-a0*invmod(b0,p),p);
#ifdef DEBUG_MINIM
cout<<"Triple root case, shifting fourth root to infinity\n";
cout<<"(gamma = "<<gamma<<")\n";
#endif
// replace g(X,Z) by g(X, Z+gamma*X)
zshift(gamma,a,b,c,d,e,m);
divide_exact(b,p,b0); // b0=b/p;
}
if(two)
{
if(ndiv(16,e)) // failure (cannot happen if 2^6|I, 2^7|J
// or 2^5|I & Q_2-soluble)
{
#ifdef DEBUG_MINIM
cout<<"Non-reducible\n";
#endif
return 0;
}
}
b=b0;
divide_exact(c,p2,c); // c=c/p2;
divide_exact(d,p*p2,d); // d=(d/p2)/p;
divide_exact(e,p2*p2,e); // e=(e/p2)/p2;
m.x_scale(p);
m.u_scale(p2);
return 1;
}
// Now the case where not all are divisible by p...
#ifdef DEBUG_MINIM
cout<<"Not all coeffs divisible by "<<p<<endl;
#endif
if(div(p,a)&&div(p,b)) // mult root is at infty, move it to 0
{
m_invert(a,b,c,d,e,m);
#ifdef DEBUG_MINIM
cout<<"Multiple root is at infinity, reversing coeffs\n";
#endif
}
else
{
if(ndiv(p,e)||ndiv(p,d)) // mult root finite and not zero
// find it and shift it to 0
{
bigint alpha = root_p(a,b,c,d,e,p);
#ifdef DEBUG_MINIM
cout<<"Multiple root is at "<<alpha<<" mod "<<p<<"\n";
cout<<"Shifting to 0...\n";
#endif
xshift(alpha,a,b,c,d,e,m);
if(ndiv(p,c)||ndiv(p,d)||ndiv(p,e))
{
cout<<"Error in c, d or e\n";
cout<<"root_p("<<a<<","<<b<<","<<c<<","<<d<<","<<e<<","<<p<<") returns "<<alpha<<endl;
}
}
}
// if ndiv(p,b) must now shift second root to infty
if(ndiv(p,a)&&ndiv(p,b))
{
bigint gamma = mod(-a*invmod(b,p),p);
#ifdef DEBUG_MINIM
cout<<"Triple root case, shifting fourth root to infinity\n";
cout<<"(gamma = "<<gamma<<")\n";
#endif
// replace g(X,Z) by g(X, Z+gamma*X)
zshift(gamma,a,b,c,d,e,m);
}
if(div(p,a)) // triple root case
{
bigint beta; beta=0;
if(three)
{
long vpi = val(3,12*a*e-3*b*d+c*c);
if(vpi==4)
divide_exact(-e,BIGINT(27),temp);
else
divide_exact(-c,BIGINT(9),temp);
if(ndiv(3,temp)) beta = 3 * mod(temp * invmod(b,3) , 3);
}
else
{
#ifdef DEBUG_MINIM
cout<<"fixing c to be divisible by p^2\n";
#endif
divide_exact(-c,p,temp);
if(ndiv(p,temp)) beta = p * mod(temp * invmod(3*b,p) , p);
}
#ifdef DEBUG_MINIM
cout<<"(beta = "<<beta<<")\n";
#endif
xshift(beta,a,b,c,d,e,m);
a=a*p2;
divide_exact(c,p2,c); // c=c/p2;
divide_exact(d,p2*p2,d); // d=(d/p2)/p2;
divide_exact(e,p2*p2*p2,e); // e=((e/p2)/p2)/p2;
m.x_scale(p2);
m.u_scale(p*p2);
return 1;
}
else // quadruple root case
{
if(three)
{
divide_exact(b,BIGINT(3),b0); // b0=b/3;
if(ndiv(p,b0))
{
bigint beta = 3 * mod(-b0*invmod(a,p),p);
#ifdef DEBUG_MINIM
cout<<"fixing b to be divisible by 9\n";
cout<<"(beta = "<<beta<<")\n";
#endif
xshift(beta,a,b,c,d,e,m);
}
}
if(two)
{
if(ndiv(16,e)) // failure (cannot happen if 2^6|I, 2^7|J
// unless "bad case quartic")
{
#ifdef DEBUG_MINIM
cout<<"Non-reducible, may be bad case\n";
#endif
return 0;
}
}
divide_exact(b,p,b); // b=b/p;
divide_exact(c,p2,c); // c=c/p2;
divide_exact(d,p*p2,d); // d=(d/p2)/p;
divide_exact(e,p2*p2,e); // e=(e/p2)/p2;
m.x_scale(p);
m.u_scale(p2);
return 1;
}
}
int is_nonmin(int smallp, long vpi, long vpj, long vpd, int assume_locsol)
// Given vpi = val(p,I) and vpj=val(p,J) returns 1 if non-minimal
// smallp = p if p=2,3 else =1.
// p=3: needs also vpd=val(p,disc)
// p=2: may or may not be minimizable, but worth a try
// (The commented out condition is sufficient but NOT necessary)
{
if(!assume_locsol) return (vpi>7)&&(vpj>11);
// if(smallp==2) return ((vpi>5)&&(vpj>8)&&(vpd>9));
if(smallp==3) return (((vpi>4)&&(vpj>8)) || ((vpi==4)&&(vpj==6)&&(vpd>14)));
return (vpi>3)&&(vpj>5);
}
void minim_all(bigint& ga, bigint& gb, bigint& gc, bigint& gd, bigint& ge,
bigint& I, bigint& J, const vector<bigint>& plist,
scaled_unimod& m,
int assume_locsol, int verb)
{
unsigned long i; long j;
for(i=0; i<plist.size(); i++)
{
bigint p=plist[i];
long smallp=1; // these save testing a (possibly big) p
if (p==2) smallp=2; // all the time
else if (p==3) smallp=3;
long vpi=1000; if(!is_zero(I)) vpi=val(p,I);
long vpj=1000; if(!is_zero(J)) vpj=val(p,J);
long vpd=0;
int nonmin, success;
if(smallp==3) vpd = val(p,4*I*sqr(I)-sqr(J));
nonmin = is_nonmin(smallp,vpi,vpj,vpd, assume_locsol);
if(!nonmin)
{
if(verb) cout<<"p="<<p<<": minimal already\n";
continue;
}
if(verb)
{
cout<<"p="<<p<<": ";
if(smallp==2) cout<<"(possibly) ";
cout<<"non-minimal (vp(I)="<<vpi<<", vp(J)="<<vpj<<")";
}
// Now nonminimal so do something
if(verb) cout<<" minimalizing at "<<p<<"....\n";
while(nonmin)
{
success=minim_p(ga,gb,gc,gd,ge,p,m);
if(success) // can only fail for p=2
{
vpi-=4; vpj-=6;
j=4; while(j--) divide_exact(I,p,I); // I/=p;
j=6; while(j--) divide_exact(J,p,J); // J/=p;
if(smallp==3) vpd-=12;
nonmin = is_nonmin(smallp,vpi,vpj,vpd, assume_locsol);
}
else nonmin=0; // avoid looping when p=2!
}
if(verb)
{
cout<<"Finished minimalizing at "<<p<<", new coefficients: \n";
cout<<"("<<ga<<","<<gb<<","<<gc<<","<<gd<<","<<ge<<")"<<endl;
cout<<"transform = "<<m<<endl;
}
bigint newI = II(ga,gb,gc,gd,ge);
bigint newJ = JJ(ga,gb,gc,gd,ge);
if((I!=newI)||(J!=newJ))
{
cout<<"Error in previous step: wrong I, J. New quartic has\n";
cout<<"I = "<<newI<<"\nJ = "<<newJ<<endl;
cout<<"but should be\n";
cout<<"I = "<<I<<"\nJ = "<<J<<endl;
}
else
if(verb) cout<<"I = "<<I<<"\nJ = "<<J<<endl;
}
}
|