1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
|
// FILE NEWFORMS.CC: implementation of newforms class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <iomanip>
#include <eclib/newforms.h>
#include <eclib/periods.h>
#include <eclib/curvesort.h>
// Functions for ordering newforms
// (1) Old ordering (first aq, then ap for good p);
// with the order for eigenvalues being
// 1,-1 or 0,1,-1,2,-2,...
// (2) New ordering (ap for all p in natural order)
// with the order for eigenvalues being
// -1,1 or ...,-2,-1,0,1,2,... (plain numerical order)
// less_ap(a,b) returns +1,0,-1 according to whether a is
// before/equal/after b in the above ordering
int less_ap(long a, long b, int old=0)
{
if(!old) return sign(b-a); // the simple new ordering!
if(a==b) return 0;
int s = sign(abs(b)-abs(a));
if(s) return s;
else return sign(a-b); // this way round! +1 before -1 etc
}
// Compare two ap-vectors lexicographically, using less_ap(.,.,old):
int less_apvec(const vector<long>& v, const vector<long>& w, int old=0);
int less_apvec(const vector<long>& v, const vector<long>& w, int old)
{
vector<long>::const_iterator vi=v.begin(), wi=w.begin();
while(vi!=v.end())
{
int s = less_ap(*vi++,*wi++,old);
if(s) return s;
}
return 0;
}
struct less_newform_old : public binary_function<newform, newform, bool> {
bool operator()(const newform& f, const newform& g)
{
int s = less_apvec(f.aqlist,g.aqlist,1);
if(s==0) s = less_apvec(f.aplist,g.aplist,1);
return (s==1);
}
};
struct less_apvec_function : public binary_function<const vector<long>&, const vector<long>&, bool> {
bool operator()(const vector<long>& f, const vector<long>& g)
{
return 1==less_apvec(f,g);
}
};
vector<long> eiglist(const newform& f, int oldorder)
{
/*
cout<<"Entering eiglist with f.aqlist="<<f.aqlist<<"\nand f.aplist=";
vec_out(cout,f.aplist,10);
cout<<endl;
*/
vector<long> eigs;
primevar pr;
long N = (f.nf)->modulus;
vector<long>::const_iterator aqi=f.aqlist.begin();
vector<long>::const_iterator api=f.aplist.begin();
vector<long>::iterator eigsi;
if(oldorder)
{
eigs.resize(f.aplist.size());
eigsi=eigs.begin();
while(aqi!=f.aqlist.end())
*eigsi++ = *aqi++;
while(api!=f.aplist.end())
{
if(ndivides(pr,N)) *eigsi++ = *api;
api++; pr++;
}
}
else
{
eigs=f.aplist; // copy; now adjust the aq:
eigsi=eigs.begin();
while((aqi!=f.aqlist.end())&&(eigsi!=eigs.end()))
{
if(::divides(pr.value(),N)) *eigsi = (*aqi++);
eigsi++; pr++;
}
}
/*
cout<<"Leaving eiglist with eigs=";
vec_out(cout,eigs,10);
cout<<endl;
*/
return eigs;
}
struct less_newform_new : public binary_function<newform, newform, bool> {
bool operator()(const newform& f, const newform& g)
{
// return less_apvec(eiglist(f),eiglist(g),0)==1;
return less_apvec(f.aplist,g.aplist,0)==1;
}
};
// Newform constructor given the ap and aq lists and extra data (but
// no homology basis), e.g. after reading from newforms file
newform::newform(const vector<int>& data, const vector<long>& aq, const vector<long>& ap, newforms* nfs) : nf(nfs)
{
sfe=data[0];
ap0=data[1];
np0=data[2];
dp0=data[3];
loverp=rational(dp0,np0);
lplus=data[4];
mplus=data[5];
lminus=data[6];
mminus=data[7];
a=data[8];
b=data[9];
c=data[10];
d=data[11];
dotplus=data[12];
dotminus=data[13];
type=data[14];
degphi=data[15];
aqlist=aq;
aplist=ap;
index=-1;
pdot=0;
rk=-1;
}
// Newform constructor, given the homology basis vector(s) and
// Hecke eigenvalues
newform::newform(const vec& vplus, const vec& vminus, const vector<long>& ap, newforms* nfs,long ind)
:nf(nfs), sign(nfs->sign), bplus(vplus),bminus(vminus),index(ind),aplist(ap),rk(-1)
{
int verbose=(nf->verbose);
if(verbose)
{
cout<<"Creating H1";
if(sign==+1) cout<<"+";
if(sign==-1) cout<<"-";
cout<<" newform from aplist..."<<endl;
if(verbose>2)
{
if(sign!=-1) cout<<"bplus = "<<bplus<<endl;
if(sign!=+1) cout<<"bminus = "<<bminus<<endl;
}
}
// check_expand_contract();
// Fixing the eigenvalue lists: ap is indexed by primes in natural
// order we need to extract aq (computing any not yet there).
// At the same time we change the entries in aplist for bad primes q
// from the Wq-eigenvalue to the newform coefficient.
fixup_eigs();
// Compute cuspidalfactors and type (only if sign=0):
type = 0;
find_cuspidal_factors();
// Compute coordsplus/minus and denomplus/minus
find_coords_plus_minus();
// Compute pdot, dp0, loverp (unless sign is -1)
find_bsd_ratio();
// Find deg(phi) (only if sign is 0)
degphi = 0;
find_degphi();
// Find twisting primes if N non-square
lplus=mplus=0;
lminus=mminus=0;
find_twisting_primes();
// find a,b,c,d,dotplus,dotminus
a=b=c=d=0;
dotplus=dotminus=0;
find_matrix();
// Set default values for optimalityfactrplus/minus (will be reset if constructing from curves)
optimalityfactorplus = 1;
optimalityfactorminus = 1;
}
int newform::check_expand_contract()
{
int success=1;
long denom = nf->h1->h1denom();
vec bplusx, bminusx, tvec;
if (sign!=-1)
{
bplusx= nf->h1->extend_coords(bplus);
tvec = nf->h1->contract_coords(bplusx);
tvec /= denom;
if (tvec!=bplus)
{
success=0;
cout<<"! bplus ="<<bplus<<" extends to "<<bplusx<<" which contracts to "<<tvec<<endl;
}
}
if (sign!=+1)
{
bminusx= nf->h1->extend_coords(bminus);
tvec = nf->h1->contract_coords(bminusx);
tvec /= denom;
if (tvec!=bminus)
{
success=0;
cout<<"! bminus="<<bminus<<" extends to "<<bminusx<<" which contracts to "<<tvec<<endl;
}
}
return success;
}
void newform::fixup_eigs()
{
long denom = nf->h1->h1denom();
aqlist.resize(nf->npdivs);
vector<long>::iterator api=aplist.begin(), pi=nf->plist.begin();
vector<long>::iterator aqi=aqlist.begin();
primevar pr; long q, i;
long n = nf->modulus;
while((api!=aplist.end())&&(aqi!=aqlist.end()))
{
q=pr.value(); pr++;
if(::divides(q,n))
{
*aqi++=*api;
*api=(::divides(q*q,n)? 0: -*api);
pi++;
}
api++;
}
if(aqi!=aqlist.end()) // compute missing aq
{
long piv;
ssubspace espace;
if(sign==-1)
espace=make1d(bminus,piv);
else
espace=make1d(bplus,piv);
piv*=denom;
while(aqi!=aqlist.end()) // compute missing aq
{
q=*pi++;
if(nf->verbose) cout<<"Computing Wq for q="<<q<<"..."<<flush;
smat Wq = nf->h1->s_heckeop_restricted(q,espace,1,0);
long aq = Wq.elem(1,1) / piv;
if(nf->verbose) cout<<"aq ="<<aq<<endl;
*aqi++=aq;
}
}
if(nf->verbose) cout<<"aqlist = "<<aqlist<<endl;
//Compute sfe:
sfe=-1;
for(i=0; i<(nf->npdivs); i++) sfe*=aqlist[i];
if(nf->verbose) cout<<"sfe = "<<sfe<<endl;
}
// Before recovering eigenbases, we need to put back the aq into the
// aplist (and resort, for efficiency).
void newform::unfix_eigs()
{
vector<long>::iterator api=aplist.begin();
vector<long>::iterator aqi=aqlist.begin();
primevar pr;
long n = nf->modulus;
while((api!=aplist.end())&&(aqi!=aqlist.end()))
{
if(::divides(pr.value(),n)) *api=*aqi++;
api++;
pr++;
}
}
// After recovering eigenbases, we need to replace the ap for bad p
void newform::refix_eigs()
{
vector<long>::iterator api=aplist.begin();
primevar pr;
long n = nf->modulus, np = nf->npdivs, ip=0, q;
while((api!=aplist.end())&&(ip<np))
{
q=pr.value();
if(::divides(q,n))
{
*api=(::divides(q*q,n)? 0: -*api);
ip++;
}
api++;
pr++;
}
}
void newform::find_bsd_ratio()
{
// get ap for p=p0:
primevar pr;
vector<long>::const_iterator api=aplist.begin();
while(pr.value()!=nf->p0) {pr++; api++;}
ap0=*api;
np0 = 1 + (nf->p0) - ap0;
if(nf->verbose) cout<<"ap0 = "<<ap0<<"\tnp0 = "<<np0<<endl;
if(sign==-1) return;
pdot = (nf->mvp)*bplus; // should be negative since L(f,1)>=0
if (pdot>0)
// NB This will ensure that plus modular symbols have the right
// sign for curves where L(E,1) is nonzero, but more work is
// necessary for the plus symbols when L(Em1)=0, and for minus
// symbols. The additional work is done in find_matrix().
{
coordsplus *= -1;
bplus *= -1;
pdot *= -1;
}
dp0=abs(pdot);
// DO NOT scale pdot by denom: factor will cancel when used to compute ap
// DO scale dp0 since it is used to compute L/P
if(dp0!=0)
{
if(denomplus>1)
{
if(::divides(denomplus,dp0)) dp0/=denomplus;
else
cout<<"newform constructor error: dp0 not divisible by denomplus!"
<<endl;
}
}
loverp = rational(dp0,np0);
if(nf->verbose)
{
cout<<"pdot = "<<pdot<<endl;
cout<<"dp0 = "<<dp0<<endl;
cout<<"np0 = "<<np0<<endl;
cout<<"loverp = "<<loverp<<endl;
}
}
void newform::find_coords_plus_minus()
{
int verbose = nf->verbose;
int i, ncoords=nf->h1->coord_vecs.size()-1;
// ncoords is the same as ngens in homspace, i.e. the number of symbols aftre 2-term relations
svec cvi;
if(sign!=-1)
coordsplus=vec(ncoords);
if(sign!=+1)
coordsminus=vec(ncoords);
// if(verbose) cout<<"About to compute coordsplus/minus"<<endl;
for(i=1; i<=ncoords; i++)
{
cvi = nf->h1->coord_vecs[i];
if(sign!=-1)
coordsplus[i]=dotmodp(cvi,bplus,MODULUS);
if(sign!=+1)
coordsminus[i]=dotmodp(cvi,bminus,MODULUS);
}
contplus=vecgcd(coordsplus);
if (contplus>1) coordsplus/=contplus;
contminus=vecgcd(coordsminus);
if (contminus>1) coordsminus/=contminus;
if(sign!=+1)
{
denomminus=contminus*cuspidalfactorminus;
if(verbose>1) cout<<"coordsminus = "<<coordsminus<<endl;
if(verbose) cout<<"denomminus = "<<denomminus<<endl;
}
if(sign!=-1)
{
denomplus=contplus*cuspidalfactorplus;
if(verbose>1) cout<<"coordsplus = "<<coordsplus<<endl;
if(verbose) cout<<"denomplus = "<<denomplus<<endl;
}
}
void newform::find_cuspidal_factors()
{
vec bplusc, bminusc;
int verbose = nf->verbose;
cuspidalfactorplus=1;
cuspidalfactorminus=1;
if(!(nf->h1->cuspidal))
{
if(sign!=-1) // do this if sign = 0,1
{
bplusc=(nf->h1->tkernbas)*bplus;
cuspidalfactorplus = vecgcd(bplusc);
bplusc /= cuspidalfactorplus;
}
if(sign!=+1) // do this if sign = 0,-1
{
bminusc=(nf->h1->tkernbas)*bminus;
cuspidalfactorminus = vecgcd(bminusc);
bminusc/= cuspidalfactorminus;
}
if(sign==0) // do this only if sign = 0
{
type=3-vecgcd(bplusc-bminusc);
if(verbose) cout<<"Lattice type = "<<type<<endl;
if((type!=1)&&(type!=2))
{
cerr<<"Error: lattice type computed to be "<<type<<", should be 1 or 2!"<<endl;
}
}
if(verbose&&(cuspidalfactorplus*cuspidalfactorminus>1))
{
if(sign!=-1)
{
cout<<"cuspidalfactorplus = "<<cuspidalfactorplus<<endl;
if(verbose>2) cout<<"bplusc = "<<bplusc<<endl;
}
if(sign!=+1)
{
cout<<"cuspidalfactorminus = "<<cuspidalfactorminus<<endl;
if(verbose>2) cout<<"bminusc = "<<bminusc<<endl;
}
}
}
}
void newform::find_degphi()
{
if(sign!=0) return;
#ifdef DEG_PHI
if(nf->verbose) cout<<"computing deg(phi)..."<<flush;
degphi=jumpinfo->degphi(bplusc,bminusc,type);
if(nf->verbose) cout<<"done..."<<flush;
#else
degphi=0;
#endif
}
void newform::find_twisting_primes()
{
int verbose=(nf->verbose);
if(verbose) cout<<"computing twisting primes (sign="<<sign<<")..."<<flush;
if(sign!=-1)
{
if(dp0!=0)
{
lplus=1; // so we need not search for a prime 1(mod 4) below
mplus=1; // dummy value, not used
}
else
{
lplus=0;
mplus =0;
}
}
if(sign!=+1)
{
lminus=0;
mminus=0;
}
if(nf->squarelevel) return;
long n = nf->modulus;
for (primevar lvar; lvar.ok() &&
(((sign!=-1)&&(mplus==0)) ||
((sign!=+1)&&(mminus==0))); lvar++)
{
//cout << "Trying l = " << lvar << endl;
while (n%lvar==0) {lvar++;}
long l = lvar;
//cout << "Trying l = " << l << endl;
if (legendre(-n,l)!=sfe) continue;
//cout << "Legendre condition passed... " << endl;
if((sign!=-1)&&(mplus==0)&&(l%4==1))
{
lplus = l;
//cout << "Trying lplus = " << l << "\n";
map<long,vec>::const_iterator vi = nf->mvlplusvecs.find(l);
if(vi==nf->mvlplusvecs.end())
mplus = (nf->mvlplusvecs[l]=nf->h1->manintwist(l))*bplus;
else
mplus = (vi->second)*bplus;
// We force mplus>0 to fix the sign of the modular symbol to
// agree with L(f*chi,1)>0, since L(f*chi,1) is real and a
// positive multiple of mplus. This uses the fact that the
// Gauus sum is +sqrt(l).
if (mplus<0)
{
mplus *= -1;
bplus *= -1;
coordsplus *= -1;
}
if((denomplus>1)&&(mplus!=0))
{
if(::divides(denomplus,mplus)) mplus/=denomplus;
else
cout<<"Warning in newform constructor: mplus not divisible by denomplus!"
<<endl;
}
}
if((sign!=+1)&&(mminus==0)&&(l%4==3))
{
lminus = l;
//cout << "Trying lminus = " << l << "\n";
map<long,vec>::const_iterator vi = nf->mvlminusvecs.find(l);
if(vi==nf->mvlminusvecs.end())
mminus = (nf->mvlminusvecs[l]=nf->h1->manintwist(l))*bminus;
else
mminus = (vi->second)*bminus;
// We force mminus<0 to fix the sign of the modular symbol
// to agree with L(f*chi,1)>0, since L(f*chi,1) is real and
// a negative multiple of mminus. This uses the fact that
// the Gauus sum is +i*sqrt(l).
if (mminus>0)
{
mminus *= -1;
bminus *= -1;
coordsminus *= -1;
}
if((denomminus>1)&&(mminus!=0))
{
if(::divides(denomminus,mminus)) mminus/=denomminus;
else
cout<<"Warning in newform constructor: mminus="<<mminus<<" is not divisible by denomminus="<<denomminus<<"!"
<<endl;
}
}
}
if(verbose)
{
cout<<"done..."<<flush;
cout<<"lplus = "<<lplus<<endl;
cout<<"mplus = "<<mplus<<endl;
cout<<"lminus = "<<lminus<<endl;
cout<<"mminus = "<<mminus<<endl;
}
}
void newform::find_matrix()
{
int verbose=(nf->verbose);
if(verbose) cout<<"computing a,b,c,d..."<<flush;
long n = nf->modulus;
int found=0;
vec v;
for(d=2; !found; d++)
{
if(1==gcd(d,n))
{
for(b=1; (b<d) && !found; b++)
{
if(1==bezout(d,-n*b,a,c))
{
// cout<<"b/d = "<<b<<"/"<<d<<": ";
v = nf->h1->coords(b,d).as_vec();
// cout<<"v="<<v<<endl;
if(sign!=-1)
{
dotplus=v*bplus;
if(::divides(denomplus,dotplus))
dotplus/=denomplus;
else
cout<<"Warning in find_matrix: dotplus not divisible by denomplus!"<<endl;
}
if(sign!=+1)
{
dotminus=v*bminus;
if(::divides(denomminus,dotminus))
dotminus/=denomminus;
else
cout<<"Warning in find_matrix: dotminus not divisible by denomminus!"<<endl;
}
found=(((dotplus!=0)||(sign==-1))&&
((dotminus!=0)||(sign==+1)));
}
}
}
}
b--; d--; //because they get incremented BEFORE the loop end-test
if(d<0) {a=-a; b=-b; c=-c; d=-d;} // because we need d>0 for integration
if(verbose)
{
cout<<"done: ";
cout << "[(" <<a<<","<<b<<";"<<c
<<","<<d<<"),"<<dotplus<<","<<dotminus
<<";"<<type<<"]"<<endl;
}
}
void newform::add_more_ap(int nap)
{
if((int)aplist.size()>=nap) return;
int verbose=(nf->verbose);
long piv, p, ap;
// Do not make the espace right away, as it is possible that the
// only ap we are missing are aq which we already have...
ssubspace espace;
int have_espace=0;
primevar pr(nap,aplist.size()+1);
while((int)aplist.size()<nap)
{
p=pr;
if(::divides(p,nf->modulus))
{
if(::divides(p*p,nf->modulus))
ap=0;
else
ap=-aqlist[find(nf->plist.begin(),nf->plist.end(),p)-nf->plist.begin()];
}
else
{
if(verbose>1) cout<<"Computing Tp for p="<<p<<endl;
if(!have_espace)
{
if(sign==-1)
espace=make1d(bminus,piv);
else
espace=make1d(bplus,piv);
piv*=nf->h1->h1denom();
have_espace=1;
}
ap = (nf->h1->s_heckeop_restricted(p,espace,1,0)).elem(1,1) / piv;
}
aplist.push_back(ap);
pr++;
}
if(verbose>1) cout<<"aplist = "<<aplist<<endl;
}
// Compute analytic rank and special value if not set
void newform::compute_rank()
{
if (rk==-1) // not yet computed
{
ldash1 x(nf, this);
Lvalue = abs(x.value()); // = L^{(r)}(f,1) -- note the r! factor!
rk = 0;
if (num(loverp)==0) // else trivially 0
rk = x.rank();
}
}
long newform::rank()
{
compute_rank(); return rk;
}
bigfloat newform::special_value()
{
compute_rank(); return Lvalue;
}
// To find optimality factors when created from a curve E. Here
// CP_opt is the periods of this newform, and of the optimal curve E0,
// which we compute earlier in the newforms class since that is where
// getperiods() is implemented.
void newform::find_optimality_factors(const CurveRed& E, int i)
{
int verbose=(nf->verbose);
bigcomplex w1,w2;
bigfloat x0, y0, xE, yE;
// Definitions: for the period lattice of the optimal curve or
// newform, x0 = (type)*(least real period) and y0 = (type)*(least
// imag period)/i. Here type = #components = 1 (Delta<0) or 2
// (Deta>0). Note that if we are in the plus or minus quotient then
// we can still compute these even though we do not now the type
// since they generate the projections of the period lattice to the
// real (resp. imaginary) axis.
// Similarly xE, yE for the input curve E, though here we do know
// the type.
// Compute the real and/or imginary periods of the newform, which
// are those of the optimal curve in the isogeny class:
if (sign==+1)
{
nf->get_real_period(i,x0);
x0 = 2*abs(x0);
}
else if (sign==-1)
{
// NB it is impossible to get the scaling right in this case
nf->get_imag_period(i,y0);
y0 = abs(y0);
}
else
{
Cperiods CP_opt = nf->getperiods(i);
int opt_type = CP_opt.getwRI(w1,w2);
x0 = opt_type * abs(w1.real());
y0 = abs(w2.imag());
}
// Compute the real and/or imginary periods of the input curve, which may not be optimal:
Cperiods CP(E);
int Etype = CP.getwRI(w1,w2);
xE = Etype * abs(w1.real()); // least real period
yE = abs(w2.imag()); // least imag period
// now xE, yE are twice the least real/imag part of a period of E in both cases
// Now we find rational approximations to the rations x0/xE and
// y0/yE. These will have very small numerators and denominators.
long n,d;
if (sign!=-1)
{
ratapprox(x0/xE,n,d,163);
optimalityfactorplus = rational(n,d);
if (verbose) cout << "x-ratio (optimalityfactorplus) = " << (x0/xE) << " = " <<n<<"/"<<d<<" = "<<optimalityfactorplus << endl;
}
if (sign!=+1)
{
ratapprox(y0/yE,n,d,163);
optimalityfactorminus = rational(n,d);
if (verbose) cout << "y-ratio (optimalityfactorminus) = " << (y0/yE) << " = " <<n<<"/"<<d<<" = "<< optimalityfactorminus << endl;
}
}
// Adjust the sign of dotplus/dotminus, mplus/mminus, pdot and the
// associated primitive coordinate vectors by computing a period
// numerically. Here we only need sufficient precision to determine
// the sign, knowing the values to be nonzero rationals with small
// denominator.
void newform::sign_normalize()
{
int verbose = (nf->verbose);
int sign = (nf->sign);
periods_direct integrator(nf, this);
integrator.compute();
bigfloat x0 = integrator.rper();
bigfloat y0 = integrator.iper();
if(verbose>1)
cout<<"integral over {0,"<<b<<"/"<<d<<"} = ("<<x0<<")+i*("<<y0<<")"<<endl;
if (sign!=-1)
{
if (dotplus*x0<0)
{
if (verbose)
cout<<"flipping sign for plus symbols"<<endl;
coordsplus *= -1;
bplus *= -1;
dotplus *= -1;
pdot *= -1;
mplus *= -1;
}
}
if (sign!=+1)
{
if (dotminus*y0<0)
{
if (verbose)
cout<<"flipping sign for minus symbols"<<endl;
coordsminus *= -1;
dotminus *= -1;
bminus *= -1;
mminus *= -1;
}
}
if (verbose>1)
{
cout<<"Approximate numerical values:"<<endl;
if (sign==0)
{
cout<<"x = "<<(x0/dotplus)<<endl;
cout<<"y = "<<(y0/dotminus)<<endl;
cout<<"integral over {0,"<<b<<"/"<<d<<"} = ("<<x0<<")+i*("<<y0<<")"<<endl;
}
if (sign==+1)
{
cout<<"x = "<<(x0/dotplus)<<endl;
cout<<"integral over {0,"<<b<<"/"<<d<<"} has real part "<<x0<<endl;
}
if (sign==-1)
{
cout<<"y = "<<(y0/dotminus)<<endl;
cout<<"integral over {0,"<<b<<"/"<<d<<"} has imaginary part "<<x0<<endl;
}
}
}
newforms::~newforms(void)
{
delete of;
delete h1plus;
delete h1minus;
delete h1full;
}
void newforms::makeh1(int s)
{
if(s==1)
{
if(!h1plus)
{
if(verbose) cout<<"Constructing H1 (with sign=+1) ..."<<flush;
h1plus = new homspace(modulus,1,0,0 /*verbose*/);
if(verbose) cout<<"done"<<endl;
}
h1 = h1plus;
return;
}
if(s==-1)
{
if(!h1minus)
{
if(verbose) cout<<"Constructing H1 (with sign=-1) ..."<<flush;
h1minus = new homspace(modulus,-1,0,0 /*verbose*/);
if(verbose) cout<<"done"<<endl;
}
h1 = h1minus;
return;
}
if(s==0)
{
if(!h1full)
{
if(verbose) cout<<"Constructing H1 (with sign=0) ..."<<flush;
h1full = new homspace(modulus,0,0,0 /*verbose*/);
if(verbose) cout<<"done"<<endl;
}
h1 = h1full;
return;
}
cout<<"Error in makeh1(s): s = "<<s<<" should be one of 0,1,-1"<<endl;
return;
}
void newforms::createfromscratch(int s, long ntp)
{
sign = s;
makeh1(s);
// cout<<"Constructing oldforms with sign="<<sign<<endl;
of = new oldforms(ntp,h1,(verbose>1),sign); // h1 provides the level*
if(verbose>1) of->display();
maxdepth = of->nap;
long mindepth = npdivs; // must include at least one good p, and it
// is cheap to continue recursing after
// reaching dimension 1.
n1ds = 0;
int upperbound = h1->dimension-(of->totalolddim);
if(upperbound>0) // Else no newforms certainly so do no work!
{
mvp=h1->maninvector(p0);
// cout<<"mvp = "<<mvp<<endl;
if(verbose>1) cout<<"h1 denom = "<<h1->h1denom()<<endl;
form_finder ff(this,(sign!=0),maxdepth,mindepth,1,0,verbose);
basisflag=0;
ff.find();
}
if(verbose)
{
cout << "Total dimension = " << h1->dimension << endl;
cout << "Number of rational newforms = " << n1ds <<endl;
if(h1->dimension==of->totalolddim+n1ds)
cout<<"The whole space splits over Q" << endl;
}
if(n1ds==0) return;
int i,nap,maxnap=0;
if((n1ds>1)&&(modulus<130000)) // reorder into old order
{
if(verbose) cout<<"Reordering newforms into old order as N<130000"<<endl;
// if(verbose) cout<<"Before sorting:\n"; display();
sort(1);
// if(verbose) cout<<"After sorting:\n"; display();
}
// At this point the newforms may contain different numbers of ap,
// so we need to even these up, which we do by computing more ap for
// those which need it.
if(n1ds>0)
{
for(i=0; i<n1ds; i++)
if((nap=nflist[i].aplist.size())>maxnap) maxnap=nap;
if(verbose)
cout<<"Max number of ap in newforms so far is "<<maxnap
<<", increasing to " << DEFAULT_SMALL_NAP << endl;
if (maxnap < DEFAULT_SMALL_NAP) maxnap = DEFAULT_SMALL_NAP;
for(i=0; i<n1ds; i++)
{
if((nap=nflist[i].aplist.size())<maxnap)
{
if(verbose)
cout<<"Newform #"<<(i+1)<<" has only "<<nap
<<" ap so we need to compute more..."<<endl;
nflist[i].add_more_ap(maxnap);
}
// Now if necessary we adjust the sign of dotplus/dotminus and the
// associated primitive coordinate vectors by computing a period
// numerically. Here we only need sufficient precision to determine
// the sign, knowing the values to be nonzero rationals with small
// denominator.
if(verbose)
cout<<"Newform #"<<(i+1)<<": fixing sign normalization using approximate periods"<<endl;
nflist[i].sign_normalize();
}
}
// Compute homspace::projcoord, so proj_coords can be used
// Replaces coord_vecs of homspace with projections onto eigenspaces
// NB if #newforms>1 this MUST be re-called after any sorting of newforms
make_projcoord();
// Look for a j0 such that nflist[i].bplus/bminus[j0]!=0 for all i, or a set of such j
find_jlist();
}
void newforms::find_jlist()
{
int i, j, ok=0; j0=0;
for(j=1; (!ok)&&(j<=h1->h1dim()); j++)
{
ok=1;
for (i=0; (i<n1ds)&&ok; i++)
if(sign==-1)
ok=(nflist[i].bminus[j]!=0);
else
ok=(nflist[i].bplus[j]!=0);
if(ok) j0=j;
}
if(ok)
{
if(verbose>1) cout<<"j0="<<j0<<endl;
jlist.insert(j0);
for (i=0; i<n1ds; i++)
{
nflist[i].j0 = j0;
vec& bas = (sign==-1? nflist[i].bminus: nflist[i].bplus);
nflist[i].fac = bas[j0];
if (verbose>1)
{
cout<<"Newform #"<<(i+1)<<": bplus = "<<bas<<endl;
cout<<" fac = "<<nflist[i].fac<<endl;
}
}
}
else
{
if(verbose)
cout<<"Failed to find j0 such that nflist[i].bplus/bminus[j0]!=0 for all i"
<<endl;
// Find out which pivots we'll be using:
for (i=0; i<n1ds; i++)
{
vec& bas = nflist[i].bplus;
j=1; while(bas[j]==0) j++;
jlist.insert(j);
nflist[i].j0 = j;
nflist[i].fac = nflist[i].bplus[j];
if (verbose>1)
{
cout<<"Newform #"<<(i+1)<<": bplus = "<<bas<<endl;
cout<<" fac = "<<nflist[i].fac<<endl;
}
}
if(verbose) cout<<"jlist="<<jlist<<endl;
}
}
// Compute homspace::projcoord, so proj_coords can be used
// Replaces coord_vecs of homspace with projections onto eigenspaces
// NB if #newforms>1 this MUST be re-called after any sorting of newforms
void newforms::make_projcoord()
{
h1->projcoord.init(h1->coord_vecs.size()-1,n1ds);
int j;
if(sign==-1)
for (j=1; j<=n1ds; j++)
h1->projcoord.setcol(j, nflist[j-1].coordsminus);
else
for (j=1; j<=n1ds; j++)
h1->projcoord.setcol(j, nflist[j-1].coordsplus);
}
long newforms::dimoldpart(const vector<long> l)
{
return of->dimoldpart(l);
}
// if(!cuspidal) we really should check here that the basis vector b1
// is in ker(delta), by checking that b1*h1->deltamat == 0
void newforms::use(const vec& b1, const vec& b2, const vector<long> aplist)
{
if(basisflag) // we already have all the data except the
// basis vector, so not much needs doing
{
int n = nf_subset[j1ds++];
newform& nf = nflist[n];
if(verbose)
cout<<"Filling in data for for newform #"<<(n+1)<<": bases..."<<flush;
nf.sign=sign;
if(sign==+1)
nf.bplus=b1;
if(sign==-1)
nf.bminus=b1; // formfinder puts the basis vector in b1
if(sign==0)
{
nf.bplus=b1;
nf.bminus=b2;
}
if(verbose)
cout<<"type and cuspidal factors..."<<flush;
nf.find_cuspidal_factors();
if(verbose)
cout<<"coords..."<<flush;
nf.find_coords_plus_minus();
if(sign==0)
{
if(verbose)
cout<<"twisting primes..."<<flush;
nf.find_twisting_primes();
if(verbose)
cout<<"matrix..."<<flush;
nf.find_matrix();
}
if(verbose)
cout<<"done."<<endl;
if(verbose)
cout<<"Finished filling in data for newform #"<<(n+1)<<endl;
return;
}
// Code for initial newform construction
// We use the newform constructor to do all the work, given the basis vector(s) and aplist:
n1ds++;
if(verbose)
{
cout<<"Constructing newform #"<<n1ds<<" with eigs ";
vec_out(cout,aplist,10);
cout<<endl;
}
if(sign==-1)
nflist.push_back(newform(b1,b1,aplist,this)); // only 2nd vector used
else
nflist.push_back(newform(b1,b2,aplist,this));
if(verbose)
cout<<"Finished constructing newform #"<<n1ds<<" with sign = "<<sign<<endl;
}
// Sort newforms
void newforms::sort(int oldorder)
{
if(oldorder)
::sort(nflist.begin(),nflist.end(),less_newform_old());
else
::sort(nflist.begin(),nflist.end(),less_newform_new());
}
// Before recovering eigenbases, we need to put back the aq into the
// aplist (and resort, for efficiency).
void newforms::unfix_eigs()
{
for(int i=0; i<n1ds; i++)
nflist[i].unfix_eigs();
}
// After recovering eigenbases, we need to refix the aplist
void newforms::refix_eigs()
{
for(int i=0; i<n1ds; i++)
nflist[i].refix_eigs();
}
void newforms::display(void) const
{
if (n1ds==0) {cout<<"No newforms."<<endl; return;}
cout << "\n"<<n1ds<<" newform(s) at level " << modulus << ":" << endl;
cout<<"p0="<<p0<<endl;
// if(dim(mvp)!=0) cout<<"mvp="<<mvp<<endl;
cout<<"#ap=\t"<<nflist[0].aplist.size()<<endl;
long i;
for(i=0; i<n1ds; i++)
{cout<<i+1<<":\t";
nflist[i].display();
}
}
#define DEBUG_SCALING
void newforms::display_modular_symbol_map(int check) const
{
long i,j,k;
rational rplus, rminus;
vector<bigfloat> x0s;
vector<bigfloat> y0s;
bigfloat x0,y0;
if (check)
for(k=0; k<n1ds; k++)
{
cout<<"getting period(s) for newform # "<<(k+1)<<endl;
get_both_periods(k,x0,y0);
cout<<"x0="<<x0<<", y0="<<y0<<endl;
x0s.push_back(x0);
y0s.push_back(y0);
}
for(i=0; i<h1->nsymb; i++)
{
symb s = h1->symbol(i);
modsym ms = modsym(s);
cout<<s<<" = "<<ms<<" -> ";
rational alpha = ms.alpha(), beta = ms.beta();
long a, b, c, d, g=0;
if (num(alpha)==0)
{
b = num(beta);
d = den(beta);
g = bezout(-modulus*b,d,c,a); // so g=a*d-b*N*c
}
j=h1->coordindex[i];
long sg=::sign(j); j=abs(j);
// cout<<"j="<<j<<"("<<sg<<")"<<endl;
if(j==0)
for(k=0; k<n1ds; k++)
if(sign!=0)
cout<<"0 ";
else
cout<<"(0,0) ";
else
for(k=0; k<n1ds; k++)
{
if (check && (g==1))
{
periods_direct integrator(this,&(nflist[k]));
integrator.compute(a,b,c,d);
x0 = integrator.rper();
y0 = integrator.iper();
}
if(sign!=-1)
{
long nrplus = sg*nflist[k].coordsplus[j];
long drplus = nflist[k].cuspidalfactorplus;
rplus = rational(nrplus,drplus);
if (check && (g==1))
{
long n = I2long(Iround(drplus *x0/x0s[k])); // should = nrplus
if (n != nrplus)
{
cout << "plus check fails: rplus = "<<nrplus<<"/"<<drplus<<" = "<<rplus<<endl;
cout << "real part = "<<x0<<endl;
cout << "x0 = "<<x0s[k]<<endl;
cout << "ratio = "<<x0/x0s[k]<<endl;
cout << "scaled ratio = "<<n<<endl;
}
}
rplus *= nflist[k].optimalityfactorplus;
}
if(sign!=+1)
{
long nrminus = sg*nflist[k].coordsminus[j];
long drminus = nflist[k].cuspidalfactorminus;
rminus = rational(nrminus,drminus);
if (check && (g==1))
{
long n = I2long(Iround(drminus *y0/y0s[k])); // should = nrminus
if (n != nrminus)
{
cout << "minus check fails: rminus = "<<rminus<<endl;
cout << "imag part = "<<y0<<endl;
cout << "y0 = "<<y0s[k]<<endl;
cout << "ratio = "<<y0/y0s[k]<<endl;
cout << "scaled ratio = "<<n<<endl;
}
}
rminus *= nflist[k].optimalityfactorminus;
}
if(sign==+1)
cout<<rplus<<" ";
else if(sign==-1)
cout<<rminus<<" ";
else
cout<<"("<<rplus<<","<<rminus<<") ";
}
cout<<endl;
}
}
void newform::display(void) const
{
cout << "aplist = ";
vec_out(cout,aplist,20); // outputs at most 20 eigs.
cout<< endl;
// cout << "basis = " << bplus << endl;
cout << "aq = " << aqlist<<endl;
cout << "ap0 = " << ap0
<<", dp0 = " << dp0
<<", np0 = " << np0;
if(pdot!=0) cout <<", pdot = " << pdot;
cout <<endl;
cout << "SFE = " << sfe << ",\tL/P = " << loverp << endl;
if(lplus>0) cout << "lplus = " << lplus << ", mplus = " << mplus << endl;
if(lminus>0) cout << "lminus = " << lminus << ", mminus = " << mminus << endl;
if(a!=0)
{
cout << "[(" <<a<<","<<b<<";"<<c
<<","<<d<<"),"<<dotplus<<","<<dotminus
<<";";
if(type)
cout<<type;
else
cout<<"?";
cout<<"]"<<endl;
}
if(index!=-1)cout << "Splitting index = " << index << endl;
}
void putout(ofstream& of, short a, int binflag)
{
if(binflag)
of.write((char*)&a,sizeof(short));
else
of<<setw(5)<<a;
}
void putout(ofstream& of, int a, int binflag)
{
if(binflag)
of.write((char*)&a,sizeof(int));
else
of<<setw(10)<<a;
}
void putout(ofstream& of, long a, int binflag)
{
if(binflag)
of.write((char*)&a,sizeof(long));
else
of<<setw(15)<<a;
}
void nl(ofstream& of, int binflag)
{if(!binflag) of<<"\n";}
void newforms::output_to_file(int binflag, int smallflag) const
{
long i,j;
char prefix = 'e';
if(binflag) prefix = 'x';
string name = smallflag ? small_nf_filename(modulus,prefix)
: nf_filename(modulus,prefix);
ofstream out(name.c_str());
if(!out)
{
cerr<<"Unable to open file "<<name<<" for newform output"<<endl;
return;
}
// else
// {
// cout<<"--outputting newforms data to "<<name<<" (smallflag="<<smallflag<<")"<<endl;
// display();
// }
if(n1ds==0)
{
putout(out,(int)0,binflag);
putout(out,(int)0,binflag);
putout(out,(int)0,binflag);
out.close();
return;
}
// Line 1: #newforms, #aq, #ap
int nap = nflist[0].aplist.size();
if (smallflag)
{
if (nap>=DEFAULT_SMALL_NAP) nap=DEFAULT_SMALL_NAP;
else
{
cout<<"Warning: small newforms output will only have" << nap
<< "a_p (at least " << DEFAULT_SMALL_NAP <<"required" << endl;
}
}
putout(out,(int)n1ds,binflag);
putout(out,(int)nflist[0].aqlist.size(),binflag);
putout(out, nap,binflag);
nl(out,binflag);
// Line 2: blank line
nl(out,binflag);
// Line 3: sign of f.e. for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].sfe,binflag);
nl(out,binflag);
// Line 4: ap0 for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].ap0,binflag);
nl(out,binflag);
// Line 5: np0 for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].np0,binflag);
nl(out,binflag);
// Line 6: dp0 for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].dp0,binflag);
nl(out,binflag);
// Line 7: lplus for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].lplus,binflag);
nl(out,binflag);
// Line 8: mplus each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].mplus,binflag);
nl(out,binflag);
// Line 9: lminus each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].lminus,binflag);
nl(out,binflag);
// Line 10: mminus for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].mminus,binflag);
nl(out,binflag);
// Line 11: matrix entry a for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].a,binflag);
nl(out,binflag);
// Line 12: matrix entry b for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].b,binflag);
nl(out,binflag);
// Line 13: matrix entry c for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].c,binflag);
nl(out,binflag);
// Line 14: matrix entry d for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].d,binflag);
nl(out,binflag);
// Line 15: dotplus for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].dotplus,binflag);
nl(out,binflag);
// Line 16: dotminus for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].dotminus,binflag);
nl(out,binflag);
// Line 17: lattice type for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].type,binflag);
nl(out,binflag);
// Line 18: deg(phi) for each newform
for(i=0; i<n1ds; i++) putout(out,(int)nflist[i].degphi,binflag);
nl(out,binflag);
// Line 19: blank line
nl(out,binflag);
// Lines 20-(20+#aq): aq for each newform; then blank line
for(j=0; j<int(nflist[0].aqlist.size()); j++)
{
for(i=0; i<n1ds; i++) putout(out,(short)nflist[i].aqlist[j],binflag);
nl(out,binflag);
}
nl(out,binflag);
// Lines (21+#aq)-(20+#aq+#ap): ap for each newform
for(j=0; j<nap; j++)
{
for(i=0; i<n1ds; i++) putout(out,(short)nflist[i].aplist[j],binflag);
nl(out,binflag);
}
out.close();
}
// Read in newform data from file NF_DIR/xN
void newforms::createfromdata(int s, long ntp,
int create_from_scratch_if_absent,
int small_data_ok)
{
sign = s;
long i, j, n = modulus;
if(verbose) cout << "Retrieving newform data for N = " << n << endl;
string name = nf_filename(modulus,'x');
ifstream datafile(name.c_str());
if(small_data_ok && !datafile.is_open())
{
if (verbose)
cout << "No file "<<name<<" exists, trying ";
name = small_nf_filename(modulus,'x');
if (verbose)
cout << name << "instead..."<<endl;
datafile.open(name.c_str());
}
if(!datafile.is_open())
{
if(verbose) cout<<"Unable to open file "<<name<<" for oldform input"<<endl;
if(create_from_scratch_if_absent)
{
if(verbose) cout<<"Creating from scratch instead"<<endl;
createfromscratch(sign, ntp);
output_to_file(1,0); // full newform data
output_to_file(1,1); // short newform data (only DEFAULT_SMALL_NAP ap)
if(verbose) cout << "Finished creating newform data for N = " << n << endl;
if(verbose) display();
}
return;
}
int temp_int;
datafile.read((char*)&temp_int,sizeof(int)); // = number of newforms
n1ds=temp_int;
datafile.read((char*)&temp_int,sizeof(int)); // = number of bad primes
datafile.read((char*)&temp_int,sizeof(int)); // = number of eigs
nap=temp_int;
if(n1ds==0)
{
if(verbose) cout << "No newforms at level " << n << endl;
datafile.close();
return;
}
vector<int> * data = new vector<int>[n1ds];
vector<long> * aq = new vector<long>[n1ds];
vector<long> * ap = new vector<long>[n1ds];
// read extra data for each newform
for(i=0; i<n1ds; i++) data[i].resize(16);
long ntotal = 16*n1ds;
int* batch_i = new int[ntotal];
datafile.read((char*)batch_i,ntotal*sizeof(int));
int *batch_i_ptr = batch_i;
for(j=0; j<16; j++)
for(i=0; i<n1ds; i++)
data[i][j]=*batch_i_ptr++;
delete[] batch_i;
// cout<<"Raw data:\n"; for(i=0; i<n1ds; i++) cout<<data[i]<<endl;
// read aq for each newform
for(i=0; i<n1ds; i++) aq[i].resize(npdivs);
ntotal = npdivs*n1ds;
short* batch = new short[ntotal];
datafile.read((char*)batch,ntotal*sizeof(short));
short *batchptr = batch;
for(j=0; j<npdivs; j++)
for(i=0; i<n1ds; i++)
aq[i][j]=*batchptr++;
// cout<<"Raw aq:\n"; for(i=0; i<n1ds; i++) cout<<aq[i]<<endl;
// read ap for each newform
for(i=0; i<n1ds; i++) ap[i].resize(nap);
ntotal = nap*n1ds;
delete[] batch;
batch = new short[ntotal];
datafile.read((char*)batch,ntotal*sizeof(short));
batchptr = batch;
for(j=0; j<nap; j++)
for(i=0; i<n1ds; i++)
ap[i][j]=*batchptr++;
// cout<<"Raw ap:\n"; for(i=0; i<n1ds; i++) cout<<ap[i]<<endl;
delete[] batch;
datafile.close();
// construct the newforms from this data
nflist.reserve(n1ds);
for(i=0; i<n1ds; i++)
nflist.push_back(newform(data[i],aq[i],ap[i],this));
delete[] ap; delete[] aq; delete[] data;
if(verbose)
{
cout << "Finished reading newform data for N = " << n << endl;
if(verbose>1) display();
}
}
// Create from a list of Hecke eigenvalues from an elliptic curve
vector<long> eiglist(CurveRed& C, int nap)
{
long N = I2long(getconductor(C));
long p; bigint pp;
vector<long> ans;
for(primevar pr(nap); pr.ok(); pr++)
{
p=pr; pp=BIGINT(p);
if(N%p==0)
ans.push_back(LocalRootNumber(C,pp));
else
ans.push_back(I2long(Trace_Frob(C,pp)));
}
// cout<<"eiglist("<<(Curve)C<<") = "<<ans<<endl;
return ans;
}
// extract the eigenvalues for bad primes
vector<long> aqlist(vector<long> aplist, long N)
{
long iq=0, p, naq = pdivs(N).size();
//cout << "Setting aq of size "<<naq<<endl;
vector<long>::const_iterator api = aplist.begin();
vector<long> aq(naq);
for(primevar pr; (iq<naq)&&pr.ok(); pr++)
{
p=pr;
if (N%p==0)
{
//cout << "Setting aq["<<p<<"] = "<<*api<<endl;
aq[iq++] = *api;
}
api++;
}
return aq;
}
// Create from a list of elliptic curves of the right conductor:
void newforms::createfromcurve(int s, const CurveRed& C, int nap)
{
vector<CurveRed> Clist; Clist.push_back(C);
return createfromcurves(s,Clist,nap);
}
void newforms::createfromcurves(int s, vector<CurveRed> Clist, int nap)
{
if(verbose) cout << "In newforms::createfromcurves()..."<<endl;
sign=s;
int ncurves = Clist.size();
if(ncurves==0) return;
if(verbose) cout << "Making homspace..."<<flush;
makeh1(sign);
if(verbose) cout << "done." << endl;
mvp=h1->maninvector(p0);
if (nap<300) nap=300;
if(verbose) cout << "Making form_finder (nap="<<nap<<")..."<<flush;
form_finder splitspace(this, (sign!=0), nap, 0, 1, 0, verbose);
if(verbose) cout << "Recovering eigenspace bases with form_finder..."<<endl;
// j1ds counts through the newforms as they are found
basisflag=0; j1ds=0;
vector< vector<long> > eigs(ncurves);
int i;
for(i=0; i<ncurves; i++)
eigs[i]=eiglist(Clist[i],nap);
n1ds=0; nflist.resize(0);
splitspace.recover(eigs); // NB newforms::use() determines what is
// done with each one as it is found;
// this depends on basisflag and sign
// Get period lattice of each newform (and hence of optimal curves)
for(i=0; i<ncurves; i++)
{
if(verbose)
cout<<"Finding optimality scaling factors using approximate periods"<<endl;
nflist[i].find_optimality_factors(Clist[i], i);
if(verbose)
cout<<"Fixing sign normalization using approximate periods"<<endl;
nflist[i].sign_normalize();
}
if(verbose) cout << "...done."<<endl;
}
void newforms::createfromcurves_mini(vector<CurveRed> Clist, int nap)
{
if(verbose) cout << "In newforms::createfromcurves_mini()..."<<endl;
int i; long N;
n1ds = Clist.size();
nflist.reserve(n1ds);
if (n1ds>0) // construct the ap and aq vectors from the curves
{
N = I2long(getconductor(Clist[0]));
for(i=0; i<n1ds; i++)
{
vector<long> ap=eiglist(Clist[i],nap);
vector<long> aq=aqlist(ap,N);
// dummy data -- these fields are not set and will not be used
vector<int> data(16,0);
newform nf(data,aq,ap,this);
if (verbose)
{
cout<<"adding this newform: "<<endl;
nf.display();
}
nflist.push_back(newform(data,aq,ap,this));
}
}
if(verbose) cout << "...done."<<endl;
}
// Read in newform data from old-style data files eigs/xN and intdata/[ep]N
void newforms::createfromolddata()
{
long i, j, n = modulus;
if(verbose)
cout << "Retrieving old-style newform data for N = " << n << endl;
stringstream eigsname;
eigsname << "eigs/x" << n;
ifstream eigsfile(eigsname.str().c_str());
if(!eigsfile.is_open())
{
cout<<"Unable to open file "<<eigsname.str()<<" for eigs input"<<endl;
return;
}
short temp;
eigsfile.read((char*)&temp,sizeof(short)); // # newforms
n1ds=temp;
eigsfile.read((char*)&temp,sizeof(short)); // # irrational newforms
eigsfile.read((char*)&temp,sizeof(short)); // # ap
nap=temp;
if(n1ds==0)
{
if(verbose) cout << "No newforms at level " << n << endl;
eigsfile.close();
return;
}
// read ap for each newform
vector<long> * ap = new vector<long>[n1ds];
for(i=0; i<n1ds; i++) ap[i].resize(nap);
long ntotal = nap*n1ds;
short* batch = new short[ntotal];
eigsfile.read((char*)batch,ntotal*sizeof(short));
eigsfile.close();
short* batchptr = batch;
for(j=0; j<nap; j++)
for(i=0; i<n1ds; i++)
ap[i][j]=*batchptr++;
// cout<<"Raw ap:\n"; for(i=0; i<n1ds; i++) cout<<ap[i]<<endl;
delete[] batch;
// extract aq for each newform
vector<long> * aq = new vector<long>[n1ds];
for(i=0; i<n1ds; i++) aq[i].resize(npdivs);
primevar pr; long q, k, a;
for(k=0, j=0; j<int(plist.size()); j++)
{
q = plist[j];
int q2divN = ::divides(q*q,modulus);
while((long)pr!=q) {pr++; k++;}
for(i=0; i<n1ds; i++)
{
a = ap[i][k];
aq[i][j] = a;
ap[i][k] = (q2divN? 0: -a);
}
}
// cout<<"Raw aq:\n"; for(i=0; i<n1ds; i++) cout<<aq[i]<<endl;
// read extra data for each newform
vector<int> * data = new vector<int>[n1ds];
for(i=0; i<n1ds; i++) data[i].resize(16);
stringstream intdataname;
intdataname << "intdata/e" << n;
ifstream intdatafile(intdataname.str().c_str());
if(!intdatafile.is_open())
{
cout<<"Unable to open data file "<<intdataname.str()<<" for data input"<<endl;
return;
}
long nloverp, dloverp, dp0, np0;
for(i=0; i<n1ds; i++)
{
// cout<<"Reading intdata for form #"<<(i+1)<<endl;
intdatafile >> data[i][15]; // degphi
// cout<<"degphi = "<<data[i][15]<<endl;
intdatafile >> data[i][0]; // sfe
// cout<<"sfe = "<<data[i][0]<<endl;
intdatafile >> nloverp; // num(L/P)
intdatafile >> dloverp; // den(L/P)
intdatafile >> data[i][14]; // type
// cout<<"type = "<<data[i][14]<<endl;
intdatafile >> dp0; data[i][3]=dp0; // dp0
// cout<<"dp0 = "<<data[i]=dp0[3]<<endl;
intdatafile >> np0; data[i][2]=np0; // np0
// cout<<"np0 = "<<data[i][2]<<endl;
if(dp0==0) data[i][3]=(2*nloverp*np0)/dloverp;
data[i][1]=1+p0-data[i][2]; // ap0 (not in intdata file)
// cout<<"ap0 = "<<data[i][1]<<endl;
intdatafile >> data[i][4]; // lplus
intdatafile >> data[i][5]; // mplus
intdatafile >> data[i][6]; // lminus
intdatafile >> data[i][7]; // mminus
intdatafile >> data[i][8]; // a
intdatafile >> data[i][9]; // b
intdatafile >> data[i][10]; // c
intdatafile >> data[i][11]; // d
intdatafile >> data[i][12]; // dotplus
intdatafile >> data[i][13]; // dotminus
}
intdatafile.close();
// cout<<"Raw data:\n"; for(i=0; i<n1ds; i++) cout<<data[i]<<endl;
// construct the newforms from this data
nflist.reserve(n1ds);
for(i=0; i<n1ds; i++)
nflist.push_back(newform(data[i],aq[i],ap[i],this));
// delete ap; delete aq; delete data;
if(verbose)
{
cout << "Finished reading oldstyle newform data for N = " << n << endl;
display();
}
}
// Construct bases (homology eigenvectors) from eigenvalue lists:
void newforms::makebases(int flag, int all_nf)
{
if(n1ds==0) return;
if(((sign==-1)||(dim(nflist[0].bplus)>0)) &&
((sign==+1)||(dim(nflist[0].bminus)>0)))
return;
if(verbose) cout << "Making homspace..."<<flush;
makeh1(sign);
if(verbose) cout << "done." << endl;
mvp=h1->maninvector(p0);
if(verbose) cout << "Making form_finder (nap="<<nap<<")..."<<flush;
form_finder splitspace(this, (sign!=0), nap, 0, 1, 0, verbose);
if(verbose) cout << "Recovering eigenspace bases with form_finder..."<<endl;
// basisflag controls what ::use() does with the nfs when found
// j1ds counts through the newforms as they are found
basisflag=flag;
int i;
j1ds = 0; // counts through newforms as they are recovered
vector< vector<long> > eigs;
if (all_nf)
{
nf_subset.clear();
for(i=0; i<n1ds; i++)
nf_subset.push_back(i);
}
unfix_eigs();
sort();
for(i=0; i<nf_subset.size(); i++)
eigs.push_back(nflist[nf_subset[i]].aplist);
splitspace.recover(eigs); // NB newforms::use() determines what is
// done with each one as it is found;
// this depends on basisflag and sign
if(verbose) cout << "...done."<<endl;
refix_eigs();
if(verbose>1) cout<<"Reordering newforms after recovery"<<endl;
if(verbose>1) {cout<<"Before sorting:\n"; display();}
sort(int(modulus<130000)); // old order for N<130000, else new order
if(verbose>1) {cout<<"After sorting:\n"; display();}
}
void newforms::merge(int all_nf)
{
if(n1ds==0) return;
if(verbose) cout << "Making homspace..."<<flush;
makeh1(0);
if(verbose) cout << "done." << endl;
vec bplus, bminus;
j1ds = 0;
basisflag = 1;
mvlplusvecs.clear();
mvlminusvecs.clear();
if (verbose>1)
cout<<"merging newforms " << nf_subset << endl;
int inf, jnf;
unfix_eigs();
sort();
for(jnf=0; jnf<nf_subset.size(); jnf++)
{
inf = nf_subset[jnf];
if(verbose) cout << "Newform #"<<(inf+1)<<":"<<endl;
if(verbose) cout << "-about to extend bplus,bminus..."<<flush;
bplus.init(h1->nsymb);
bminus.init(h1->nsymb);
int i,j;
for(i=1; i<=h1->nsymb; i++)
{
j = h1plus->coordindex[i-1];
if (j==0) bplus[i] = 0;
else if (j>0) bplus[i] = nflist[inf].coordsplus[j];
else if (j<0) bplus[i] = -nflist[inf].coordsplus[-j];
j = h1minus->coordindex[i-1];
if (j==0) bminus[i] = 0;
else if (j>0) bminus[i] = nflist[inf].coordsminus[j];
else if (j<0) bminus[i] = -nflist[inf].coordsminus[-j];
}
if(verbose) cout<< "done, about to contract bplus,bminus..."<<flush;
bplus = h1->contract_coords(bplus);
bplus /= vecgcd(bplus);
bminus = h1->contract_coords(bminus);
bminus /= vecgcd(bminus);
if(verbose) cout<< "done."<<endl;
if(verbose>1)
{
cout << " new bplus = "<<bplus <<":"<<endl;
cout << " new bminus = "<<bminus<<":"<<endl;
}
// These new dual eigenvectors are used to compute all
// additional data needed for curve and modular symbol
// computation (scaling and cuspidal factors and type)
use(bplus, bminus, nflist[inf].aplist);
}
refix_eigs();
sort(int(modulus<130000)); // old order for N<130000, else new order
}
void update(const mat& pcd, vec& imagej, long ind)
{
if(ind>0) imagej.add_row(pcd,ind);
else
if(ind<0) imagej.sub_row(pcd,-ind);
}
vector<long> newforms::apvec(long p) // computes a[p] for each newform
{
//cout<<"In apvec with p = "<<p<<endl;
vector<long> apv(n1ds);
vec v;
long i,j,iq,ap;
if(::divides(p,modulus)) // we already have all the aq
{
if(::divides(p*p,modulus))
for (i=0; i<n1ds; i++) apv[i] = 0;
else
{
iq = find(plist.begin(),plist.end(),p)-plist.begin();
for (i=0; i<n1ds; i++) apv[i] = -nflist[i].aqlist[iq];
}
return apv;
}
// now p is a good prime
long maxap=(long)(2*sqrt((double)p)); // for validity check
map<long,vec> images; // [j,v] stores image of j'th M-symbol in v
// (so we don't compute any more than once)
vec bas, imagej;
long p2=(p-1)>>1; // (p-1)/2
long sg, a, b, c, q, r;
long u1,u2,u3;
long ind;
// Compute the image of the necessary M-symbols (hopefully only one)
//cout<<"Computing images of M-symbols"<<endl<<flush;
//cout<<"jlist = "<<jlist<<endl;
for(std::set<long>::const_iterator jj=jlist.begin(); jj!=jlist.end(); jj++)
{
imagej=vec(n1ds); // initialised to 0
j=*jj;
symb s = h1->symbol(h1->freegens[j-1]);
//cout<<"Computing image of "<<j<<"'th M-symbol "<<s<<endl;
//cout<<" = "<<s<<"..."<<flush;
long u=s.cee(),v=s.dee();
mat& pcd = h1->projcoord;
//cout<<"projcoord = "<<pcd;
// Matrix [1,0;0,p]
ind = h1->coordindex[h1->index2(u,p*v)];
update(pcd,imagej,ind);
//cout<<"(1) (u1,u2)=("<<u<<","<<p*v<<") partial image index is "<<ind<<", subtotal="<<imagej<<endl;
// Matrix [p,0;0,1]
ind = h1->coordindex[h1->index2(p*u,v)];
update(pcd,imagej,ind);
//cout<<"(2) (u1,u2)=("<<p*u<<","<<v<<") partial image index is "<<ind<<", subtotal="<<imagej<<endl;
// Other matrices
for(sg=0; sg<2; sg++) // signs
for(r=1; r<=p2; r++)
{
a = -p;
b = sg ? -r : r ;
u1=u*p; u2=v-u*b;
ind = h1->coordindex[h1->index2(u1,u2)];
update(pcd,imagej,ind);
//cout<<"(3) (u1,u2)=("<<u1<<","<<u2<<") partial image index is "<<ind<<", subtotal="<<imagej<<endl;
while(b!=0)
{
c=mod(a,b); q=(a-c)/b;
if(q==1) {u3= u2-u1;} else {u3=q*u2-u1;}
a=-b; b=c; u1=u2; u2=u3;
ind = h1->coordindex[h1->index2(u1,u2)];
update(pcd,imagej,ind);
//cout<<"(4) (u1,u2)=("<<u1<<","<<u2<<") partial image index is "<<ind<<", subtotal="<<imagej<<endl;
}
}
images[j]=imagej;
//cout<<" image is "<<imagej<<endl;
}
for (i=0; i<n1ds; i++)
{
// recover eigenvalue:
//cout<<"Numerator = "<< images[nflist[i].j0][i+1] <<endl;
//cout<<"Denominator = "<< nflist[i].fac << endl;
ap = images[nflist[i].j0][i+1]/nflist[i].fac;
ap *= (sign==-1? nflist[i].contminus: nflist[i].contplus);
ap /= h1->h1denom();
apv[i]=ap;
// check it is in range:
if((ap>maxap)||(-ap>maxap))
{
cout<<"Error: eigenvalue "<<ap<<" for p="<<p
<<" for form # "<<(i+1)<<" is outside valid range "
<<-maxap<<"..."<<maxap<<endl;
break; // no point in trying to compute any more.
}
}
return apv;
}
void newforms::addap(long last) // adds ap for primes up to the last'th prime
{
if(n1ds==0) return;
long i, j, p;
j=0;
if(verbose>1) // output the ap already known...
for(primevar pr(nflist[0].aplist.size()); pr.ok(); pr++, j++)
{
p=(long)pr;
if(ndivides(p,modulus)) cout<<"p="; else cout<<"q=";
cout<<p<<":\t";
{
for (i=0; i<n1ds; i++) cout<<nflist[i].aplist[j]<<"\t";
cout<<endl;
}
}
// Now compute and output the rest of the ap...
for(primevar pr(last,1+nflist[0].aplist.size()); pr.ok(); pr++)
{
p=(long)pr;
vector<long> apv=apvec(p);
if(verbose>1)
{
if(ndivides(p,modulus)) cout<<"p="; else cout<<"q=";
cout<<p<<":\t";
for (i=0; i<n1ds; i++) cout<<apv[i]<<"\t";
cout<<endl;
}
for (long i=0; i<n1ds; i++) nflist[i].aplist.push_back(apv[i]);
}
}
void output_to_file_no_newforms(long n, int binflag, int smallflag)
{
char prefix = 'e';
if(binflag) prefix = 'x';
string name = smallflag ? small_nf_filename(n,prefix)
: nf_filename(n,prefix);
ofstream out(name.c_str());
if(binflag)
{
int a=0;
out.write((char*)&a,sizeof(int));
out.write((char*)&a,sizeof(int));
out.write((char*)&a,sizeof(int));
}
else
{
out<<"0 0 0\n";
}
out.close();
}
// for the i'th newform return the value of the modular symbol {0,r} (default) or {oo,r}
rational newforms::plus_modular_symbol(const rational& r, long i, int base_at_infinity) const
{
rational a(h1->nfproj_coords(num(r),den(r),nflist[i].coordsplus),
nflist[i].cuspidalfactorplus);
// {oo,r} = {0,r}+{oo,0} and loverp={oo,0} (not {0,oo}!)
if (base_at_infinity) a+=nflist[i].loverp;
a *= nflist[i].optimalityfactorplus;
return a;
}
rational newforms::minus_modular_symbol(const rational& r, long i, int base_at_infinity) const
{
// Ignore the value of base_at_infinity as it does not affect the minus symbol
rational a(h1->nfproj_coords(num(r),den(r),nflist[i].coordsminus),
nflist[i].cuspidalfactorminus);
a *= nflist[i].optimalityfactorminus;
return a;
}
pair<rational,rational> newforms::full_modular_symbol(const rational& r, long i, int base_at_infinity) const
{
mat m(h1->coord_vecs.size()-1,2);
m.setcol(1,nflist[i].coordsplus);
m.setcol(2,nflist[i].coordsminus);
vec a = h1->proj_coords(num(r),den(r),m);
rational a1(a[1],nflist[i].cuspidalfactorplus);
// {oo,r} = {0,r}+{oo,0} and loverp={oo,0} (not {0,oo}!)
if (base_at_infinity) a1 += nflist[i].loverp;
a1 *= nflist[i].optimalityfactorplus;
rational a2(a[2],nflist[i].cuspidalfactorminus);
a2 *= nflist[i].optimalityfactorminus;
return pair<rational,rational> ( a1, a2 );
}
// Attempt to compute and display the elliptic curve for each
// newform; return a list of newform indices where this failed.
vector<int> newforms::showcurves(vector<int> forms, int verbose, string filename)
{
if((verbose>1)&&(sqfac>1)) cout<<"c4 factor " << sqfac << endl;
ofstream curve_out;
int output_curves = (filename!="no");
if (output_curves) curve_out.open(filename.c_str());
bigfloat rperiod;
bigint a1,a2,a3,a4,a6, N;
vector<int> badcurves; // will hold the indices of forms for which we fail to find a curve
vector<int>::const_iterator inf; // will iterate through the forms to be used
for(inf=forms.begin(); inf!=forms.end(); inf++)
{
if(verbose)
cout<<"\n"<<"Form number "<<*inf+1<<"\n";
else cout<<(*inf+1)<<" ";
if (output_curves)
curve_out << modulus << " "<< codeletter(*inf) << " 1 ";
Curve C = getcurve(*inf,-1,rperiod,verbose);
Curvedata CD(C,1); // The 1 causes minimalization
if(verbose) cout << "\nCurve = \t";
cout << (Curve)CD << "\t";
CurveRed CR(CD);
N = getconductor(CR);
cout << "N = " << N << endl;
if(verbose) cout<<endl;
if(N!=modulus)
{
cout<<"No curve found"<<endl;
badcurves.push_back(*inf);
if (output_curves)
curve_out<<endl;
}
else
if (output_curves)
{
C.getai(a1,a2,a3,a4,a6);
curve_out<<"["<<a1<<","<<a2<<","<<a3<<","<<a4<<","<<a6<<"]";
int nt = CD.get_ntorsion();
int r = nflist[*inf].rank(); // analytic rank
curve_out<<" "<<r<<" "<<nt<<" 0"<<endl;
}
}
if (output_curves)
curve_out.close();
return badcurves;
}
|