File: cubic.cc

package info (click to toggle)
eclib 20250122-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 5,916 kB
  • sloc: cpp: 45,414; makefile: 272; sh: 127
file content (916 lines) | stat: -rw-r--r-- 26,296 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
// cubic.cc:  implementation of integer cubic class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 //

#include <eclib/realroots.h>
#include <eclib/cubic.h>
#include <eclib/marith.h>
#include <eclib/polys.h>
#include <cassert>

bigint zero(0), one(1);

// comparison operator for sorting
int operator<(const cubic& F1, const cubic& F2)
{
  return std::lexicographical_compare(F1.coeffs.begin(), F1.coeffs.end(), F2.coeffs.begin(), F2.coeffs.end());
}

vector<bigint> transform_helper(const bigint& a, const bigint& b, const bigint& c, const bigint& d,
                                const unimod& m)
{
  bigint m112=sqr(m(1,1)); bigint m113=m112*m(1,1);
  bigint m212=sqr(m(2,1)); bigint m213=m212*m(2,1);
  bigint m222=sqr(m(2,2)); bigint m223=m222*m(2,2);
  bigint m122=sqr(m(1,2)); bigint m123=m122*m(1,2);

  bigint A = m113*a + m(2,1)*m112*b + m212*m(1,1)*c + m213*d;
  bigint B = 3*m(1,2)*m112*a + (m(2,2)*m112 + 2*m(2,1)*m(1,2)*m(1,1))*b
    + (2*m(2,2)*m(2,1)*m(1,1) + m212*m(1,2))*c + 3*m(2,2)*m212*d;
  bigint C = 3*m122*m(1,1)*a + (2*m(2,2)*m(1,2)*m(1,1) + m(2,1)*m122)*b
    + (m222*m(1,1) + 2*m(2,2)*m(2,1)*m(1,2))*c + 3*m222*m(2,1)*d;
  bigint D = m123*a + m(2,2)*m122*b + m222*m(1,2)*c + m223*d;

  return {A,B,C,D};
}

vector<bigint> transform_helper(const vector<bigint>& abcd, const unimod& m)
{
  return transform_helper(abcd[0],abcd[1],abcd[2],abcd[3],m);
}

void cubic::transform(const unimod& m)
{
  coeffs = transform_helper(coeffs, m);
}

cubic transform(const cubic& F, const unimod& m)
{
  return cubic(transform_helper(F.coeffs, m));
}

void cubic::sl2_reduce(unimod& m)
{
  if (disc()<0)
    jc_reduce(m);
  else
    hess_reduce(m);
}

//#define DEBUG_NORMALISE

// - for an sl2-reduced cubic, normalise w.r.t. <-I> (default) or <S> or <TS>
// - updates m by multiplying by normalising transformation
void cubic::normalise(unimod& m)
{
  int nautos = 2;

#ifdef DEBUG_NORMALISE
  cout<<"Normalising "<<(*this)<<endl;
#endif

  if (disc()<zero)
    {
      // Coeffs of covariant are [h0,h1,h2].  We have extra autos if
      // h0=h2, i.e. C1=0.  The covariant is const*(X^2+Y^2) if also
      // h1=0, i.e. C4=0, or const*(X^2+XY+Y^2) if also h1=h0,
      // i.e. C2=0.
      bigint C1=j_c1(), C2=j_c2(), C4=j_c4();
      nautos = (C1==0? (C4==0? 4: (C2==0? 6: 2)): 2);
#ifdef DEBUG_NORMALISE
      cout<<"Covariant quantities are C1="<<C1<<", C2="<<C2<<", C3="<<j_c3()<<", C4="<<C4<<endl;
#endif
    }
  else
    {
      // Coeffs of covariant are [P,Q,R].  We have extra autos if P=R.
      // The covariant is const*(X^2+Y^2) if also Q=0, or
      // const*(X^2+XY+Y^2) if also Q=R.
      bigint P=p_semi(), Q=q_semi(), R=r_semi();
      nautos = (P==R? (Q==0? 4: (Q==R? 6: 2)): 2);
#ifdef DEBUG_NORMALISE
      cout<<"Hessian coefficients are P="<<P<<", Q="<<Q<<", R="<<R<<endl;
      cout<<"Hessian root is "<<hess_root()<<endl;
#endif
    }

#ifdef DEBUG_NORMALISE
      cout<<"Number of automorphisms = "<<nautos<<endl;
#endif

  vector<cubic> Flist; // will hold the candidates
  vector<unimod> transforms; // will hold the transformations taking original cubic to candidates
  cubic F1 = *this;
  Flist.push_back(F1);
  unimod autpower; // initialised to identity
  transforms.push_back(autpower);
  unimod auto2(-one,zero,zero,-one), auto4(zero,-one,one,zero), auto6(one,one,-one,zero);
  unimod aut = (nautos==4? auto4: (nautos==6? auto6: auto2));
  for(int i=1; i<nautos; i++)
    {
      F1.transform(aut);
      Flist.push_back(F1);
      autpower*=aut;
      transforms.push_back(autpower);
    }

#ifdef DEBUG_NORMALISE
  cout<<"Comparing "<<Flist.size()<<" candidates for the reduced representative of "<<(*this)<<": "<<Flist<<endl;
#endif
  auto biggest = std::max_element(Flist.begin(),Flist.end());
  coeffs = biggest->coeffs;
  autpower = *(transforms.begin() + (biggest-Flist.begin()));
#ifdef DEBUG_NORMALISE
  cout<<"Largest one after sorting is "<<(*this)<<", the transform by "<<autpower<<endl;
#endif
  m *= autpower;
  return;
}

// Tests for sl2/gl2-equivalence:
int cubic::sl2_equivalent(const cubic& G) const
{
  unimod m; // not used but the reduction functions need one
  cubic F1(*this), G1(G);
  if (F1==G1)
    return 1;
  F1.negate(m);
  if (F1==G1)
    return 1;
  if (F1.disc()!=G1.disc())
    return 0;
  F1.sl2_reduce(m);
  G1.sl2_reduce(m);
  return F1==G1;
}

int cubic::gl2_equivalent(const cubic& G) const
{
  unimod m(-one,zero,zero,one);
  return (sl2_equivalent(G) || sl2_equivalent(::transform(G,m)));
}

// Test for sl2/gl2-equivalence to one in a list:
int cubic::sl2_equivalent_in_list(const vector<cubic>& Glist) const
{
  for (auto Gi=Glist.begin(); Gi!=Glist.end(); ++Gi)
    if (sl2_equivalent(*Gi))
      return 1;
  return 0;
}

int cubic::gl2_equivalent_in_list(const vector<cubic>& Glist) const
{
  for (auto Gi=Glist.begin(); Gi!=Glist.end(); ++Gi)
    if (gl2_equivalent(*Gi))
      return 1;
  return 0;
}

// affine roots of F mod q.
// NB rootsmod requires a non-constant polynomial

// affine roots of F mod q, assuming leading coefficient a() is nonzero:
vector<bigint> cubic::roots_mod(const bigint& q) const
{
  bigint aq(a()%q), bq(b()%q), cq(c()%q), dq(d()%q);
  if (is_zero(aq) && is_zero(bq) && is_zero(cq))
    return {};
  return rootsmod({dq,cq,bq,aq}, q);
}

// Return 1 iff F has a projective root mod q:
int cubic::has_roots_mod(const bigint& q) const
{
  return div(q,a()) || (roots_mod(q).size() > 0);
}

void cubic::x_shift(const bigint& e, unimod& m)
{
  coeffs[3] += e*(c()+e*(  b()+  e*a()));
  coeffs[2] +=        e*(2*b()+3*e*a());
  coeffs[1] +=                 3*e*a();
  m.x_shift(e);
}

void cubic::y_shift(const bigint& e, unimod& m)
{
  coeffs[0] += e*(b()+e*(  c()+  e*d()));
  coeffs[1] +=        e*(2*c()+3*e*d());
  coeffs[2] +=                 3*e*d();
  m.y_shift(e);
}

void cubic::invert(unimod& m)
{
  swap(coeffs[0],coeffs[3]); ::negate(coeffs[0]);
  swap(coeffs[1],coeffs[2]); ::negate(coeffs[2]);
  m.invert();
}

void cubic::negate(unimod& m)
{
  for (int i=0; i<4; i++)
    ::negate(coeffs[i]);
  m.negate();
}

void cubic::seminegate(unimod& m)
{
  for (int i=0; i<2; i++)
    ::negate(coeffs[2*i+1]);
  m.seminegate();
}

// The quantity called C_1 in the paper, = Norm(h2-h0) and should be
// NON-NEGATIVE for a reduced form:

bigint cubic::j_c1() const
{
  bigint a = coeffs[0], b=coeffs[1], c=coeffs[2], d=coeffs[3];
  bigint b2=sqr(b);
  bigint b3=b*b2;
  bigint b4=b*b3;
  bigint b5=b*b4;
  bigint b6=b*b5;
  bigint a2=sqr(a);
  bigint a3=a*a2;
  bigint a4=a*a3;
  bigint c2=sqr(c);
  bigint c3=c*c2;
  bigint c4=c*c3;
  bigint c5=c*c4;
  bigint c6=c*c5;
  bigint d2=sqr(d);
  bigint d3=d*d2;
  bigint d4=d*d3;
  bigint ac=a*c, bd=b*d;
  return - 108*b3*a2*d - 3*b4*c2 + 54*a2*c4 + 18*b5*d + 243*a2*d2*b2 -
    54*b3*ac*d - 162*bd*c2*a2 - 54*a3*c3 + 486*a3*bd*c + 3*c4*b2 -
      18*c5*a + 54*c3*a*bd - 243*d2*a2*c2 + 162*d2*ac*b2 + 2*c6 -
	729*a4*d2 - 2*b6 + 18*b4*ac - 27*a2*b2*c2 + 729*d4*a2 + 54*b3*d3 +
	  108*c3*d2*a - 18*c4*bd + 27*d2*c2*b2 - 486*d3*ac*b - 54*d2*b4;

}

// The quantity called C_2 in the paper, = Norm(h0-h1) and should be
// NON-NEGATIVE for a reduced form:

bigint cubic::j_c2() const
{
  bigint a = coeffs[0], b=coeffs[1], c=coeffs[2], d=coeffs[3];
  bigint b2=sqr(b);
  bigint b3=b*b2;
  bigint b4=b*b3;
  bigint b5=b*b4;
  bigint b6=b*b5;
  bigint a2=sqr(a);
  bigint a3=a*a2;
  bigint a4=a*a3;
  bigint c2=sqr(c);
  bigint c3=c*c2;
  bigint c4=c*c3;
  bigint c5=c*c4;
  bigint c6=c*c5;
  bigint d2=sqr(d);
  bigint d3=d*d2;
  bigint d4=d*d3;
  bigint ac=a*c, bd=b*d;

  return 108*b3*a2*d - 12*b4*c2 + 216*a2*c4 + 72*b5*d + 486*a3*c2*d
    - 270*a2*c3*b + 90*b3*c2*a + 972*a2*d2*b2 - 216*b3*ac*d -
      648*bd*c2*a2 + 54*a3*c3 - 486*a3*bd*c + 16*c3*b3 - 216*d2*b3*a -
	72*d*b4*c - 72*c4*b*a - 216*d*c3*a2 + 432*d*b2*a*c2 
    + 729*a4*d2 + 2*b6
	  - 18*b4*ac + 27*a2*b2*c2 - 6*b5*c + 648*b2*c*a2*d 
    - 162*a*d*b4 -  1458*a3*d2*b;
}

// The quantity called C_3 in the paper, = Norm(h0+h1) and should be
// POSITIVE for a reduced form:

bigint cubic::j_c3() const
{
  bigint a = coeffs[0], b=coeffs[1], c=coeffs[2], d=coeffs[3];
  bigint b2=b*b;
  bigint b3=b*b2;
  bigint b4=b*b3;
  bigint b5=b*b4;
  bigint b6=b*b5;
  bigint a2=a*a;
  bigint a3=a*a2;
  bigint a4=a*a3;
  bigint c2=c*c;
  bigint c3=c*c2;
  bigint c4=c*c3;
  bigint c5=c*c4;
  bigint c6=c*c5;
  bigint d2=d*d;
  bigint d3=d*d2;
  bigint d4=d*d3;

  return 108*b3*a2*d - 12*b4*c2 + 216*a2*c4 + 72*b5*d - 486*a3*c2*d +
    270*a2*c3*b - 90*b3*c2*a + 972*a2*d2*b2 - 216*b3*c*a*d - 648*b*c2*a2*d
      + 54*a3*c3 - 486*a3*d*c*b - 16*c3*b3 + 216*d2*b3*a + 72*d*b4*c +
	72*c4*b*a + 216*d*c3*a2 - 432*d*b2*a*c2 + 729*a4*d2 + 2*b6 - 18*b4*a*c
	  + 27*a2*b2*c2 + 6*b5*c - 648*b2*c*a2*d + 162*a*d*b4 + 1458*a3*d2*b;
}

// The quantity C_4 (not in the paper), = Norm(h1)/8 and should be
// NON-NEGATIVE for a reduced form with C1=0 (i.e. when h0=h2 we want h1>=0).

bigint cubic::j_c4() const
{
  bigint a = coeffs[0], b=coeffs[1], c=coeffs[2], d=coeffs[3];
  bigint b2=b*b;
  bigint b3=b*b2;
  bigint b4=b*b3;
  bigint a2=a*a;
  bigint c2=c*c;
  bigint c3=c*c2;
  bigint c4=c2*c2;
  bigint d2=d*d;

  return 27*d*c3*a2 + (27*d2*b3 - 54*d*c2*b2 + 9*c4*b)*a + 9*d*c*b4 - 2*c3*b3;
}

//#define DEBUG_REDUCE

bigcomplex cubic::hess_root() const
{
  bigfloat discr = I2bigfloat(disc());
  if(!is_positive(disc()))
    {
      cout<<"Error: hess_root called with negative dicriminant!\n";
      return bigcomplex(); // 0
    }
  bigfloat P = I2bigfloat(p_semi());
  bigfloat Q = I2bigfloat(q_semi());
  bigfloat delta = sqrt(3*discr);
  bigcomplex gamma(-Q,delta); gamma/=(2*P);
  return gamma;
}

int cubic::is_hessian_reduced() const
// for positive discriminant only
// The condition is -P < Q <= P < R or 0 <= Q <= P=R.
{
  bigint P = p_semi();
  bigint R = r_semi();
  if (P>R) return 0;
  // now P<=R
  bigint Q = q_semi();
  if (Q>P) return 0;
  // now Q<=P<=R
  if (P==R) return (Q>=0);
  return (Q>-P);
}

void cubic::hess_reduce(unimod& m)
{
  int s=1;  bigint k;
  m.reset();
#ifdef DEBUG_REDUCE
  cout<<"Using hess_reduce() on "<<(*this)<<endl;
#endif
  while(s)
    {
      s=0;
      // NB roundover(a,b) returns c such that a/b=c+x and -1/2 < x <= 1/2,
      // so after the shift (when P>0) we have -P <= Q < P.
      k = roundover(-q_semi(),2*p_semi());
      if(!is_zero(k))
	{
	  s=1;	  x_shift(k,m);
#ifdef DEBUG_REDUCE
	  cout << "Shift by " << k << ": " << (*this) << endl;
#endif
	}
      if(p_semi()>r_semi())
	{
	  s=1;	  invert(m);
#ifdef DEBUG_REDUCE
	  cout << "invert: " << (*this) << endl;
#endif
	}
    }
  // Now we have -P <= Q < P <= R and test for boundary condition
  if ((p_semi()==r_semi()) && (q_semi()<0))
    {
      invert(m);
#ifdef DEBUG_REDUCE
      cout << "Final inversion: " << (*this) << endl;
#endif
    }
  normalise(m);
}

void cubic::mathews_reduce(unimod& m)
{
  int s=1;  bigint k; bigfloat alpha;
  m.reset();
  while(s)
    {
      s=0;
      if(mat_c1()<0)
	{
	  s=1; invert(m);
#ifdef DEBUG_REDUCE
	  cout << "invert: " << (*this) << endl;
#endif
	}
      alpha = real_root();
      k = Iround(-alpha/2 - I2bigfloat(b())/I2bigfloat(2*a()));
      if (k!=0)
        {
          s=1;
          x_shift(k,m);
#ifdef DEBUG_REDUCE
      cout << "Shift by "<<k<<": "<<(*this)<<endl;
#endif
        }
      bigint plus1, minus1;  plus1=1; minus1=-1;
      while(mat_c2()>0)
	{
	  s=1; x_shift(plus1,m);
#ifdef DEBUG_REDUCE
	  cout << "Shift by +1: "<<(*this)<<endl;
#endif
	}
      while(mat_c3()<0)
	{
	  s=1; x_shift(minus1,m);
#ifdef DEBUG_REDUCE
	  cout << "Shift by -1: "<<(*this)<<endl;
#endif
	}
    }
  if(a()<0) negate(m);
}

int cubic::is_jc_reduced() const // for negative discriminant only
{
  if (is_zero(a())) // we want the quadratic form (b,c,d) to be reduced
    {
      bigint b(coeffs[1]), c(coeffs[2]), d(coeffs[3]);
      if (b==d)
        return ((0<=c) && (c<=b));
      else
        return ((-b<c) && (c<=b) && (b<d));
    }
  bigint C1 =  j_c1();
  if (C1<0) return 0;
  // now C1>=0, i.e. h0<=h2
  bigint C2 = j_c2();
  if (C2<0) return 0;
  // now C1, C2 >=0, i.e. h1<=h0<=h2
  if (is_zero(C1)) // i.e. h0=h2
    {
      bigint C4 =  j_c4(); // = N(h1)/8, not in JCM paper
      return (C4>=0); // i.e. h1 >= 0
    }
  bigint C3 =  j_c3();
  return (C3>0); // i.e. h1 > -h0
}

void cubic::jc_reduce(unimod& m)
{
  int s=1;   bigint k, jc2, jc3;
  bigint plus1(one), minus1(-one);

  bigfloat alpha, ra, rb, rc, h0, h1;

  m.reset();
#ifdef DEBUG_REDUCE
  bigfloat rd, h2;
  cout << "\nJC-reducing " << (*this) << "...\n";
  cout<<"C1="<<j_c1()<<", C2="<<j_c2()<<", C3="<<j_c3()<<", C4="<<j_c4()<<endl;
  alpha = real_root();
  cout<<"alpha = "<<alpha<<endl;
  ra = I2bigfloat(a());
  rb = I2bigfloat(b());
  rc = I2bigfloat(c());
  rd = I2bigfloat(d());
  h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
  h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc;
  h2 = 3*(ra*rc*alpha + rb*rc-3*ra*rd)*alpha + 2*rc*rc - 3*rb*rd;
  cout << "(h0,h1,h2) = ("<<h0<<", " << h1 << ", "<<h2<<")"<<endl;
#endif

  if (is_zero(a()))
    {
      bigint bb=b(), cc=c(), q,r;
      if (bb<0)
        {
          bb = -bb;
          cc = -cc;
          m.negate();
        }
      ::divides(-cc,2*bb,q,r);
      if (r>=bb)
        q+=1;
#ifdef DEBUG_REDUCE
      cout << "[a=0] shift "<< (*this);
#endif
      x_shift(q,m);
#ifdef DEBUG_REDUCE
      cout << " by "<<q<< " to get " << (*this) << endl;
      cout<<"b="<<b()<<", c="<<c()<<", d="<<d()<<endl;
#endif
      // assert (is_jc_reduced());
      normalise(m);
      return;
    }

  while(s)
    {
      s=0;
      if (is_zero(a()))
        {
          jc_reduce(m);
          return;
        }
      if(j_c1()<0) // then h0 <= h2 fails, so invert:
	{
	  s=1;  invert(m);
#ifdef DEBUG_REDUCE
	  cout << "inverting --> " << (*this) << endl;
          cout<<"C1="<<j_c1()<<", C2="<<j_c2()<<", C3="<<j_c3()<<", C4="<<j_c4()<<endl;
          alpha = real_root();
          cout<<"alpha = "<<alpha<<endl;
          ra = I2bigfloat(a());
          rb = I2bigfloat(b());
          rc = I2bigfloat(c());
          rd = I2bigfloat(d());
          h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
          h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc;
          h2 = 3*(ra*rc*alpha + rb*rc-3*ra*rd)*alpha + 2*rc*rc - 3*rb*rd;
          cout << "(h0,h1,h2) = ("<<h0<<", " << h1 << ", "<<h2<<")"<<endl;
#endif
	}
      if ((j_c2()<0) || (j_c3()<=0)) // then -h0 < h1 <= h0 fails, so shift:
        {
          s=1;
          alpha = real_root();
#ifdef DEBUG_REDUCE
          cout<<"alpha = "<<alpha<<endl;
#endif
          ra = I2bigfloat(a());
          rb = I2bigfloat(b());
          rc = I2bigfloat(c());
          h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
          h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc;
          //h2 = 3*(ra*rc*alpha + rb*rc-3*ra*rd)*alpha + 2*rc*rc - 3*rb*rd;
          k = Iround(-h1/(2*h0)); // this is the amount to shift by
          if (k!=0)
            {
              x_shift(k,m);
#ifdef DEBUG_REDUCE
              cout << "Shift by "<<k<<"--> "<<(*this)<<endl;
              cout<<"C1="<<j_c1()<<", C2="<<j_c2()<<", C3="<<j_c3()<<", C4="<<j_c4()<<endl;
              alpha = real_root();
              cout<<"alpha = "<<alpha<<endl;
              ra = I2bigfloat(a());
              rb = I2bigfloat(b());
              rc = I2bigfloat(c());
              rd = I2bigfloat(d());
              h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
              h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc;
              h2 = 3*(ra*rc*alpha + rb*rc-3*ra*rd)*alpha + 2*rc*rc - 3*rb*rd;
              cout << "(h0,h1,h2) = ("<<h0<<", " << h1 << ", "<<h2<<")"<<endl;
#endif
            }
          // Two loops to guard against rounding error in computing k:
          while(j_c2()<0) // h1>h0 so shift by -1
            {
              x_shift(minus1,m);
#ifdef DEBUG_REDUCE
              cout << "Shift by -1 --> "<<(*this)<<endl;
#endif
            }
          while(j_c3()<=0) // h1<=-h0 so shift by +1
            {
              x_shift(plus1,m);
#ifdef DEBUG_REDUCE
              cout << "Shift by +1--> "<<(*this)<<endl;
#endif
            }
        }
      if (is_zero(j_c1()) && (j_c4()<0)) // h0=h2 and h1<0, so invert
        {
          s=1;  invert(m);
#ifdef DEBUG_REDUCE
          cout << "final inversion--> " << (*this) << endl;
          cout<<"C1="<<j_c1()<<", C2="<<j_c2()<<", C3="<<j_c3()<<", C4="<<j_c4()<<endl;
          alpha = real_root();
          cout<<"alpha = "<<alpha<<endl;
          ra = I2bigfloat(a());
          rb = I2bigfloat(b());
          rc = I2bigfloat(c());
          rd = I2bigfloat(d());
          h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
          h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc;
          h2 = 3*(ra*rc*alpha + rb*rc-3*ra*rd)*alpha + 2*rc*rc - 3*rb*rd;
          cout << "(h0,h1,h2) = ("<<h0<<", " << h1 << ", "<<h2<<")"<<endl;
#endif
        }
#ifdef DEBUG_REDUCE
      cout<<"C1="<<j_c1()<<", C2="<<j_c2()<<", C3="<<j_c3()<<", C4="<<j_c4()<<endl;
      alpha = real_root();
      cout<<"alpha = "<<alpha<<endl;
      ra = I2bigfloat(a());
      rb = I2bigfloat(b());
      rc = I2bigfloat(c());
      rd = I2bigfloat(d());
      h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
      h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc;
      h2 = 3*(ra*rc*alpha + rb*rc-3*ra*rd)*alpha + 2*rc*rc - 3*rb*rd;
      cout << "(h0,h1,h2) = ("<<h0<<", " << h1 << ", "<<h2<<")"<<endl;
#endif
    }
  normalise(m);
  assert (is_jc_reduced());
}

  // Just shifts x:
bigint cubic::shift_reduce()
{
  unimod m; bigint k;
  if(is_positive(disc()))
    {
      k = roundover(-q_semi(),2*p_semi());
    }
  else
    {
      bigfloat alpha = real_root();
      bigfloat ra = I2bigfloat(a());
      bigfloat rb = I2bigfloat(b());
      bigfloat rc = I2bigfloat(c());
      bigfloat h0 = (9*ra*ra*alpha + 6*ra*rb)*alpha  + 6*ra*rc-rb*rb;
      bigfloat h1 = 6*(ra*rb*alpha + (rb*rb-ra*rc))*alpha + 2*rb*rc; 
      k = Iround(-h1/(2*h0));
    }
  x_shift(k,m);
  return k;
}

bigfloat cubic::real_root() const
{
  bigfloat discr = I2bigfloat(disc());
  if(discr>=0)
    {
      cout<<"Error: real_root called with positive dicriminant!\n";
      return to_bigfloat(0);
    }

  bigfloat A = I2bigfloat(a());
  if(is_real_zero(A))
    {
      return A;
    }

  bigfloat P = I2bigfloat(p_semi());
  bigfloat Q = I2bigfloat(q_semi());
  if(is_real_zero(P))
    {
      bigfloat R = I2bigfloat(r_semi())/Q;
      bigfloat eta3  = I2bigfloat(d())/A - (I2bigfloat(c())*R)/(3*A);
      bigfloat eta   = cube_root(eta3);
      bigfloat alpha = -eta - R;
      return alpha;
    }

  bigfloat U = I2bigfloat(u_semi());
  bigfloat delta = sqrt(-3*discr);
  bigfloat gamma1 = (-Q+delta)/(2*P);  // roots of Hessian
  bigfloat gamma2 = (-Q-delta)/(2*P);  //
  bigfloat eta3  = (U-3*A*delta)/(U+3*A*delta);
  bigfloat eta   = cube_root(eta3);
  bigfloat alpha = (eta*gamma1-gamma2)/(eta-1);
  return alpha;
}

vector<bigrational> cubic::rational_roots() const
{
  return roots(coeffs);
}


vector<cubic> reduced_cubics(const bigint& disc, int include_reducibles, int gl2, int verbose)
{
  bigint a, b, c, d;
  bigint amax, bmin, bmax, a2, b2, b3, b4, cmin, cmax, r;
  bigint P, U, absU, U2, Ud, Db2;
  int sU;
  bigfloat i3a, a23, ra2, rb2, D, D2, D3, D32, D4, Pmax, Pmin;

  unimod m;

  bigfloat third = 1/to_bigfloat(3);
  bigfloat const1 = 2 / sqrt(to_bigfloat(27));
  bigfloat const2 = 3 / pow(to_bigfloat(4), third);
  bigfloat const3 = sqrt(to_bigfloat(8)/to_bigfloat(27));
  bigfloat const4 = to_bigfloat(27)/to_bigfloat(8);
  bigfloat const5 = sqrt(pow(to_bigfloat(2), third));

  int neg=(disc<0);
  vector<cubic> glist; // will hold all cubics found
  vector<cubic> reduced_glist; // will hold unique reduced cubics found
  if(verbose>1) cout << "Discriminant = " << disc << endl;
  D = I2bigfloat(disc);
  D2 = sqrt(abs(D));
  D3 = pow(abs(D),third);
  if (neg) D3=-D3;
  D32 = D2*D2*D2;
  D4 = sqrt(D2);
  // Upper bound on a:
  amax = Ifloor((neg? const3: const1) * D4);
  if(verbose>1) cout<<"Upper bound on a: " << amax << endl;
  if (include_reducibles)
    {
      //
      // Code for a=0:
      //
      bmax = (neg? Ifloor(const5*D4): Ifloor(D4));
      if(verbose>1) cout<<"a=0, b<="<<bmax<<endl;
      for (b=1; b<=bmax; b++)
        {
          b2=b*b;
          if (::divides(disc,b2,Db2,r))
            {
              b4 = 4*b;
              for (c=1-b; c<=b; c++)
                {
                  if (::divides(c*c-Db2,b4,d,r))
                    {
                      if ((verbose>1) && glist.size()==0) cout<<disc<<" :\n";
                      cubic g(a,b,c,d);
                      assert(g.disc()==disc);
                      g.sl2_reduce(m);
                      glist.push_back(g);
                      if(verbose>1)
                        {
                          cout<<"found "<<g;
                          cout<<" (reducible: leading coefficient 0)\n";
                        }
                    }
                }
            }
        }
    } // end of a=0 code
  //
  // Code for a>0:
  //
  for(a=1; a<=amax; a++)
    {
      a2=a*a;
      ra2 = I2bigfloat(a2);
      a23 = pow(ra2, third);
      i3a = 1/I2bigfloat(3*a);
      Pmax = (neg? pow(2*D32+const4*D*ra2, third): D2);
      Pmin = const2*D3*a23;
      if(verbose>1) cout<<"bounds on P: ["<<Pmin<<","<<Pmax<<"]"<<endl;
      bmax=(3*a)/2;
      bmin=-bmax;
      if (2*bmax==3*a) bmin++;
      if(verbose>1) cout<<"a="<<a<<"; bounds on b: ["<<bmin<<","<<bmax<<"]"<<endl;
      for(b=bmin; b<=bmax; b++)
        {
          b2=b*b; b3=b*b2;
          rb2 = I2bigfloat(b2);
          cmin =  Ifloor((rb2-Pmax)*i3a); // round down for safety
          cmax = Iceil((rb2-Pmin)*i3a);   // round up for safety
          if(verbose>1) cout<<"(a,b)=("<<a<<","<<b<<"); bounds on c: ["<<cmin<<","<<cmax<<"]"<<endl;
          for(c=cmin; c<=cmax; c++)
            {
              P = b2-3*a*c;
              U2 = 4*P*P*P-27*disc*a2;
              Ud = 2*b3-9*a*b*c;
              if(verbose>1) cout<<"(a,b,c)=("<<a<<","<<b<<","<<c<<"): P="<<P<<", U^2="<<U2<<endl;
              if(isqrt(U2,absU))
                {
                  for (sU=0; sU<2; sU++)
                    {
                      U = (sU? -absU: absU);
                      if(::divides(U-Ud,27*a2,d,r))
                        {
                          if (verbose>1 && glist.size()==0) cout<<disc<<" :\n";
                          cubic g(a,b,c,d);
                          assert(g.disc()==disc);
                          g.sl2_reduce(m);
                          if(verbose>1) cout<<"found "<<g;
                          int irred = g.is_irreducible();
                          if (verbose>1)
                            {
                              if (irred)
                                cout<<" (irrreducible)\n";
                              else
                                cout<<" (reducible)\n";
                            }
                          if (irred or include_reducibles)
                              glist.push_back(g);
                        } // d integral test
                    }     // sign(U) loop
                }         // U square test
            } // c loop
        }     // b loop
    }         // a loop

  if (verbose)
    {
      cout << glist.size() << " cubics found with discriminant " << disc << ".";
      if (glist.size()>0) cout << glist << "\n Now reducing and eliminating repeats...";
      cout<<endl;
    }

  for (auto gi=glist.begin(); gi!=glist.end(); gi++)
    {
      cubic g = *gi;
      if(verbose) cout<<g;
      if (neg)
        {
          if (verbose>1) cout<<": testing JC-reduction..."<<endl;
          if (g.is_jc_reduced())
            {
              if(verbose) cout<<"\t (JC-reduced)";
            }
          else
            {
              if(verbose) cout<<"\t---(reduces to)--->\t";
              g.jc_reduce(m);
              if(verbose) cout<<g;
            }
        }
      else
        {
          if (g.is_hessian_reduced())
            {
              if(verbose) cout<<"\t (Hessian-reduced)";
            }
          else
            {
              if(verbose) cout<<"\t---(reduces to)--->\t";
              g.hess_reduce(m);
              if(verbose) cout<<g;
            }
        }

      // Check to see if this reduced cubic is already in the list:
      int equiv;
      if (gl2)
        equiv = g.gl2_equivalent_in_list(reduced_glist);
      else
        equiv = g.sl2_equivalent_in_list(reduced_glist);
      if (equiv)
        {
          if(verbose)
            {
              cout<<" -REPEAT";
              if(gl2)
                cout<<" (GL(2,Z)-equivalent)";
              else
                cout<<" (SL(2,Z)-equivalent)";
            }
        }
      else
        {
          reduced_glist.push_back(g);
          if(verbose)
            {
              cout<<" -NEW";
              if(gl2)
                cout<<" (not GL(2,Z)-equivalent)";
              else
                cout<<" (not SL(2,Z)-equivalent)";
            }
        }
      if(verbose) cout<<endl;
    }
  if (verbose && glist.size()>0)
    {
      cout << reduced_glist.size();
      cout << (gl2? " GL":" SL");
      cout << "(2,Z)-inequivalent cubics found with discriminant " << disc << "." << endl;
    }
  return reduced_glist;
}