1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
// curvedata.cc -- implementation of Curvedata class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/curve.h>
#include <eclib/cubic.h>
Curvedata::Curvedata(const bigint& aa1, const bigint& aa2,
const bigint& aa3, const bigint& aa4,
const bigint& aa6, int min_on_init)
: Curve(aa1,aa2,aa3,aa4,aa6),
b2(a1*a1 + 4*a2), b4(2*a4 + a1*a3), b6(a3*a3 + 4*a6),
minimal_flag(0), ntorsion(0)
{
b8 = (b2*b6 - b4*b4) / 4;
c4 = b2*b2 - 24*b4;
c6 = -b2*b2*b2 + 36*b2*b4 - 216*b6;
discr = (c4*c4*c4 - c6*c6) / 1728;
discr_factored=0;
if(sign(discr)==0) // singular curve, replace by null
{
a1=0;a2=0;a3=0;a4=0;a6=0;
b2=0;b4=0;b6=0;b8=0;
c4=0;c6=0;
conncomp=0;
}
else
{
conncomp = sign(discr)>0 ? 2 : 1;
if (min_on_init) minimalize(); // which sets discr
}
}
//#define DEBUG_Q_INPUT
Curvedata::Curvedata(const vector<bigrational>& qai, bigint& scale)
: minimal_flag(0), ntorsion(0)
{
static const bigint one(1);
bigrational qa1(qai[0]), qa2(qai[1]), qa3(qai[2]), qa4(qai[3]), qa6(qai[4]);
scale = one;
a1=num(qa1); a2=num(qa2); a3=num(qa3); a4=num(qa4); a6=num(qa6);
#ifdef DEBUG_Q_INPUT
cout<<"In Curvedata constructor with ["<<qa1<<","<<qa2<<","<<qa3<<","<<qa4<<","<<qa6<<"]"<<endl;
#endif
vector<bigint> plist=pdivs(den(qa1));
plist=vector_union(plist,pdivs(den(qa2)));
plist=vector_union(plist,pdivs(den(qa3)));
plist=vector_union(plist,pdivs(den(qa4)));
plist=vector_union(plist,pdivs(den(qa6)));
#ifdef DEBUG_Q_INPUT
cout<<"Denominator primes: "<<plist<<endl;
#endif
for( const auto& p : plist)
{
#ifdef DEBUG_Q_INPUT
cout<<"p = "<<p<<endl;
#endif
long e=val(p,den(qa1));
e=max(e,ceil(rational(val(p,den(qa2)),2)));
e=max(e,ceil(rational(val(p,den(qa3)),3)));
e=max(e,ceil(rational(val(p,den(qa4)),4)));
e=max(e,ceil(rational(val(p,den(qa6)),6)));
#ifdef DEBUG_Q_INPUT
cout<<"e = "<<e<<endl;
#endif
if(e>0)
{
bigint pe=pow(p,e);
scale *= pe;
bigint pei=pe;
a1*=pei; pei*=pe;
a2*=pei; pei*=pe;
a3*=pei; pei*=pe;
a4*=pei; pei*=pe; pei*=pe;
a6*=pei;
}
}
a1/=den(qa1); a2/=den(qa2); a3/=den(qa3); a4/=den(qa4); a6/=den(qa6);
#ifdef DEBUG_Q_INPUT
cout<<"After scaling, coeffs are ["<<a1<<","<<a2<<","<<a3<<","<<a4<<","<<a6<<"]"<<endl;
#endif
b2 = a1*a1 + 4*a2; b4 = 2*a4 + a1*a3;
b6 = a3*a3 + 4*a6; b8 = (b2*b6 - b4*b4) / 4;
c4 = b2*b2 - 24*b4; c6 = -b2*b2*b2 + 36*b2*b4 - 216*b6;
discr = (c4*c4*c4 - c6*c6) / 1728;
discr_factored=0;
if(sign(discr)==0) // singular curve, replace by null
{
a1=0;a2=0;a3=0;a4=0;a6=0;
b2=0;b4=0;b6=0;b8=0;
c4=0;c6=0;
conncomp=0;
}
else
{
conncomp = sign(discr)>0 ? 2 : 1;
}
}
Curvedata::Curvedata(const Curve& c, int min_on_init)
: Curve(c),
b2(a1*a1 + 4*a2), b4(2*a4 + a1*a3), b6(a3*a3 + 4*a6),
minimal_flag(0), ntorsion(0)
{
b8 = (b2*b6 - b4*b4) / 4;
c4 = b2*b2 - 24*b4;
c6 = -b2*b2*b2 + 36*b2*b4 - 216*b6;
discr = (c4*c4*c4 - c6*c6) / 1728;
discr_factored=0;
if(sign(discr)==0) // singular curve, replace by null
{
a1=0;a2=0;a3=0;a4=0;a6=0;
b2=0;b4=0;b6=0;b8=0;
c4=0;c6=0;
conncomp=0;
}
else
{
conncomp = sign(discr)>0 ? 2 : 1;
if (min_on_init) minimalize(); // which sets discr
}
}
Curvedata::Curvedata(const Curvedata& c)
: Curve(c), b2(c.b2), b4(c.b4), b6(c.b6), b8(c.b8), c4(c.c4),
c6(c.c6), discr(c.discr), minimal_flag(c.minimal_flag),
discr_factored(c.discr_factored), conncomp(c.conncomp),
ntorsion(c.ntorsion)
{
if(discr_factored) the_bad_primes=c.the_bad_primes;
}
Curvedata::Curvedata(const Curvedata& c, int min_on_init)
: Curve(c), b2(c.b2), b4(c.b4), b6(c.b6), b8(c.b8), c4(c.c4),
c6(c.c6), discr(c.discr), minimal_flag(c.minimal_flag),
discr_factored(c.discr_factored), conncomp(c.conncomp),
ntorsion(c.ntorsion)
{
if(discr_factored) the_bad_primes=c.the_bad_primes;
if (min_on_init) minimalize();
}
Curvedata::Curvedata(const bigint& cc4, const bigint& cc6, int min_on_init)
:minimal_flag(0), discr_factored(0), ntorsion(0)
{
if (valid_invariants(cc4, cc6))
{
c4=cc4; c6=cc6;
c4c6_to_ai(cc4, cc6, a1, a2, a3, a4, a6, b2, b4, b6, b8);
/*
cout<<"a1="<<a1<<"\t";
cout<<"a2="<<a2<<"\t";
cout<<"a3="<<a3<<"\t";
cout<<"a4="<<a4<<"\t";
cout<<"a6="<<a6<<"\n";
*/
if (min_on_init) minimalize();
else
{
discr = (c4*c4*c4 - c6*c6) / 1728;
}
conncomp = sign(discr)>0 ? 2 : 1;
}
else
{
cout << " ## attempt to call Curve constructor\n"
<< " with invalid invariants c4 = "<<cc4<<", cc6 = "<<c6
<< ": reading as null curve\n";
a1=0; a2=0; a3=0; a4=0; a6=0;
b2=0; b4=0; b6=0; b8=0;
c4=0; c6=0; discr=0;
}
}
void Curvedata::operator=(const Curvedata& c)
{
a1 = c.a1, a2 = c.a2, a3 = c.a3, a4 = c.a4, a6 = c.a6;
b2 = c.b2, b4 = c.b4, b6 = c.b6, b8 = c.b8;
c4 = c.c4, c6 = c.c6, discr = c.discr;
minimal_flag = c.minimal_flag;
discr_factored = c.discr_factored;
if(discr_factored) the_bad_primes = c.the_bad_primes;
conncomp = c.conncomp;
ntorsion = c.ntorsion;
}
// Minimalizing, reducing, and standardizing a general curve
// based on Laska--Kraus--Connell algorithm
void Curvedata::minimalize()
{
if (minimal_flag) return;
if ( isnull() ) {minimal_flag = 1; return; }
// else we are ready for Laska-Kraus-Connell reduction
bigint newc4, newc6, newdiscr, u;
//cout<<"minimising c4, c6 = "<<c4<<", "<<c6<<"\n";
minimise_c4c6(c4,c6,discr,newc4,newc6,newdiscr,u);
//cout<<"minimal c4, c6 = "<<newc4<<", "<<newc6<<"\t"<<"( u = "<<u<<")\n";
// now compute minimal equation
if ( u > 1) { c4 = newc4; c6 = newc6; }
discr = newdiscr;
if(discr_factored)
{
if(u>1) // trim list of bad primes
{
vector<bigint> new_bad_primes;
for (const auto& p : the_bad_primes)
{
if(div(p,discr))
new_bad_primes.push_back(p);
}
the_bad_primes=new_bad_primes;
}
}
else
the_bad_primes = pdivs(discr);
// cout<<"After Curvedata::minimalize(): discr = "<<discr<<", ";
// cout<<"with bad primes "<<the_bad_primes<<endl;
c4c6_to_ai(c4,c6,a1,a2,a3,a4,a6,b2,b4,b6,b8);
minimal_flag = 1;
}
Curvedata Curvedata::minimalize(bigint& u, bigint& r, bigint& s, bigint& t) const
{
if (minimal_flag)
{
Curvedata newc(*this);
r=0; s=0; t=0; u=1;
return newc;
}
// else we use Laska-Kraus-Connell reduction
bigint newc4, newc6, newdiscr, u2;
//cout<<"minimising c4, c6 = "<<c4<<", "<<c6<<"\n";
minimise_c4c6(c4,c6,discr,newc4,newc6,newdiscr,u);
//cout<<"minimal c4, c6 = "<<newc4<<", "<<newc6<<"\t"<<"( u = "<<u<<")\n";
Curvedata newc(newc4, newc6, 0); // no need to re-minimalise
//cout<<"minimal curve = "<<newc<<endl;
s = (u*newc.a1 - a1)/2; u2=u*u;
r = (u2*newc.a2 - a2 + s*a1 + s*s)/3;
t = (u2*u*newc.a3 - a3 - r*a1)/2;
// cout<<"r,s,t="<<r<<","<<s<<","<<t<<endl;
return newc;
}
void Curvedata::transform(const bigint& r, const bigint& s, const bigint& t) //NB u=1;
{
a6 += r*(a4 + r*(a2 + r)) - t*(a3 + r*a1 + t);
a4 += -s*a3 + 2*r*a2 - (t + r*s)*a1 + 3*r*r - 2*s*t;
a3 += r*a1 +t+t;
a2 += -s*a1 + 3*r - s*s;
a1 += s+s;
b2 = a1*a1 + 4*a2;
b4 = a4+a4 + a1*a3;
b6 = a3*a3 + 4*a6;
b8 = (b2*b6 - b4*b4) / 4;
}
void Curvedata::input(istream& is)
{
Curve::input(is);
b2=a1*a1 + 4*a2; b4=2*a4 + a1*a3;
b6=a3*a3 + 4*a6; b8= (b2*b6 - b4*b4) / 4;
c4=b2*b2 - 24*b4; c6=-b2*b2*b2 + 36*b2*b4 - 216*b6;
discr= (c4*c4*c4 - c6*c6) / 1728;
minimal_flag=0;
discr_factored=0;
conncomp= sign(discr)>0 ? 2 : 1;
ntorsion=0;
}
void Curvedata::output(ostream& os) const
{
Curve::output(os);
if (isnull()) {os << " --singular\n"; return; }
if (minimal_flag) os << " (reduced minimal model)";
os << endl;
os << "b2 = " << b2 << "\t "
<< "b4 = " << b4 << "\t "
<< "b6 = " << b6 << "\t "
<< "b8 = " << b8 << endl;
os << "c4 = " << c4 << "\t\t"
<< "c6 = " << c6 << endl;
os << "disc = " << discr << "\t(";
if (minimal_flag&&discr_factored)
os << "bad primes: " << the_bad_primes << ";\t";
os << "# real components = " << conncomp << ")" << endl;
if (ntorsion) os<<"#torsion = "<<ntorsion<<endl;
else os<<"#torsion not yet computed"<<endl;
}
Curvedata opt_x_shift(const Curvedata& C, bigint& k)
{
bigint b2,b4,b6,b8,four(4),zero(0);
C.getbi(b2,b4,b6,b8);
cubic b_cubic(four,b2,2*b4,b6);
k = b_cubic.shift_reduce();
Curvedata CD(C);
CD.transform(k,zero,zero);
return CD;
}
|