1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
// divpol.cc: implementations of functions for division polynomials
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// NB the external interface uses a simple vector<bigint> of
// coefficients rather than a polynomial type to simplify the
// NTL interface
#include <eclib/polys.h>
#include <eclib/divpol.h>
// The 2-divison polynomial (cubic in x)
ZPoly div_pol_2(const bigint& a1,const bigint& a2,const bigint& a3,const bigint& a4,
const bigint& a6)
{
ZPoly ans;
SetDegree(ans,3);
SetCoeff(ans,3,4);
SetCoeff(ans,2,a1*a1+4*a2);
SetCoeff(ans,1,2*a1*a3+4*a4);
SetCoeff(ans,0,a3*a3+4*a6);
return ans;
}
// div_pol_odd(a1,a2,a3,a4,a6,n) returns the coefficients of the
// polynomial in x whose zeros are the (x-coordinates of the) non-zero
// points P on E=[a1,a2,a3,a4,a6] satisfying nP=0 (odd n)
// The poly itself is found recursively
ZPoly div_pol_odd(const bigint& a1,const bigint& a2,const bigint& a3,const bigint& a4,
const bigint& a6, int n)
{
static const bigint four(4);
ZPoly X; ZPolySetX(X);
ZPoly f1 = X*(X*(X+a2)+a4)+a6;
ZPoly f2 = a1*X+a3;
ZPoly psi24=(four*f1+f2*f2); psi24*=psi24;
ZPoly ans;
switch(n) {
case 0:
SetDegree(ans,0); SetCoeff(ans,0,0); return ans;
case 1: case 2:
SetDegree(ans,0); SetCoeff(ans,0,1); return ans;
case 3:
SetDegree(ans,4);
SetCoeff(ans,4,3);
SetCoeff(ans,3,a1*a1+4*a2);
SetCoeff(ans,2,3*a1*a3+6*a4);
SetCoeff(ans,1,3*a3*a3+12*a6);
SetCoeff(ans,0,a1*a1*a6-a1*a3*a4+a2*a3*a3+4*a2*a6-a4*a4);
return ans;
case 4:
SetDegree(ans,6);
SetCoeff(ans,6,2);
SetCoeff(ans,5,a1*a1+4*a2);
SetCoeff(ans,4,5*a1*a3+10*a4);
SetCoeff(ans,3,10*a3*a3+40*a6);
SetCoeff(ans,2,10*a1*a1*a6-10*a1*a3*a4+10*a2*a3*a3+40*a2*a6-10*a4*a4);
SetCoeff(ans,1,a1*a1*a1*a1*a6-a1*a1*a1*a3*a4+a1*a1*a2*a3*a3+8*a1*a1*a2*a6-a1*a1*a4*a4-4*a1*a2*a3*a4-a1*a3*a3*a3-4*a1*a3*a6+4*a2*a2*a3*a3+16*a2*a2*a6-4*a2*a4*a4-2*a3*a3*a4-8*a4*a6);
SetCoeff(ans,0,a1*a1*a1*a3*a6-a1*a1*a3*a3*a4+2*a1*a1*a4*a6+a1*a2*a3*a3*a3+4*a1*a2*a3*a6-3*a1*a3*a4*a4+2*a2*a3*a3*a4+8*a2*a4*a6-a3*a3*a3*a3-8*a3*a3*a6-2*a4*a4*a4-16*a6*a6);
return ans;
default: // general case, use recursion
// If n is odd, n=2m+1:
if(n%2==1)
{
int m=(n-1)/2;
ZPoly t1=div_pol_odd(a1,a2,a3,a4,a6,m);
t1=div_pol_odd(a1,a2,a3,a4,a6,m+2)*t1*t1*t1;
ZPoly t2=div_pol_odd(a1,a2,a3,a4,a6,m+1);
t2=div_pol_odd(a1,a2,a3,a4,a6,m-1)*t2*t2*t2;
if(m%2==1) return t1-psi24*t2;
return psi24*t1-t2;
}
else // n is even, n=2m:
{
int m=n/2;
ZPoly t1=div_pol_odd(a1,a2,a3,a4,a6,m-1);
t1=div_pol_odd(a1,a2,a3,a4,a6,m+2)*t1*t1;
ZPoly t2=div_pol_odd(a1,a2,a3,a4,a6,m+1);
t2=div_pol_odd(a1,a2,a3,a4,a6,m-2)*t2*t2;
return div_pol_odd(a1,a2,a3,a4,a6,m)*(t1-t2);
}
}
}
ZPoly div_pol(const bigint& a1,const bigint& a2,const bigint& a3,const bigint& a4,
const bigint& a6,int n)
{
return (n==2? div_pol_2(a1,a2,a3,a4,a6) : div_pol_odd(a1,a2,a3,a4,a6,n));
}
ZPoly division_polynomial(Curvedata* E, int p)
{
bigint a1,a2,a3,a4,a6;
E->getai(a1,a2,a3,a4,a6);
return (p==2? div_pol_2(a1,a2,a3,a4,a6) : div_pol_odd(a1,a2,a3,a4,a6,p));
}
// Numerator of the multiplication-by-n map on the x-coordinate
ZPoly mul_by_n_num(const bigint& a1,const bigint& a2,const bigint& a3,const bigint& a4,
const bigint& a6, int n)
{
ZPoly X; ZPolySetX(X);
ZPoly P_2 = div_pol_2(a1,a2,a3,a4,a6);
ZPoly P_n = div_pol_odd(a1,a2,a3,a4,a6,n);
ZPoly P_nplus1 = div_pol_odd(a1,a2,a3,a4,a6,n+1);
ZPoly P_nminus1 = div_pol_odd(a1,a2,a3,a4,a6,n-1);
ZPoly A = X * P_n * P_n;
ZPoly B = P_nminus1 * P_nplus1;
return (n%2==0? A * P_2 - B : A - P_2 * B);
}
// Denominator of the multiplication-by-n map on the x-coordinate
ZPoly mul_by_n_den(const bigint& a1,const bigint& a2,const bigint& a3,const bigint& a4,
const bigint& a6, int n)
{
ZPoly P_n = div_pol_odd(a1,a2,a3,a4,a6,n);
return (n%2==1? P_n * P_n : P_n * P_n * div_pol_2(a1,a2,a3,a4,a6));
}
// Polynomial whose roots are x(Q) for Q satisfying n*Q=P, where x(P)=xP/zP
ZPoly division_points_X_pol(const bigint& a1,const bigint& a2,const bigint& a3,const bigint& a4,
const bigint& a6,
int n,
const bigint& xP, const bigint& zP)
{
ZPoly numpoly = mul_by_n_num(a1, a2, a3, a4, a6, n);
ZPoly denpoly = mul_by_n_den(a1, a2, a3, a4, a6, n);
//cout << "numpoly = " << numpoly << endl;
//cout << "denpoly = " << numpoly << endl;
return zP * numpoly - xP * denpoly;
}
|