1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
// heights.cc: implementation of height functions declared in points.h
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/points.h> // which includes curve.h
#ifdef MPFP // use NTL to compute the determinant
#include <NTL/mat_RR.h>
#else
#define MAX_RANK_REG 50 // cannot ask for regulator of more than 50 points.
#endif
//#define DEBUG_HEIGHT
bigfloat height(Point& P)
{
#ifdef DEBUG_HEIGHT
cout<<"Computing height of P = "<<P<<endl;
cout<<"(P.E = "<<P.E<<")\n";
cout<<"(E = "<<(Curve)*(P.E)<<")\n";
cout<<"(current height attribute is "<<P.height<<")\n";
#endif
if (!(P.isvalid()))
{
cerr<<"Run-time error: point "<<P<<" is not valid on its curve "<<(Curve)(P.getcurve())<<endl;
exit(1);
}
bigfloat zero(to_bigfloat(0));
if (P.height >= zero) return P.height; // already calculated it
if (P.is_zero()) {P.height = zero; return zero; } // zero height if torsion
if (order(P) > 0) {P.height = zero; return zero; } // zero height if torsion
// N.B. So if we ever ask a point its height it will compute its order.
// otherwise need to calculate it
// The local height at p will only be correctly computed by
// pheight() if the curve is minimal at p
Curvedata* E = P.E;
vector<bigint> bad_p = getbad_primes(*E);
Curvedata Emin;
Point Pmin(Emin); // assigns Pmin.E to a pointer to Emin
// NB the is_minimal function returns 0 when minimization has not
// been done; the curve may still be minimal
if (!is_minimal(*E))
{
bigint u, r, s, t;
Emin = E->minimalize(u,r,s,t);
Pmin = transform(P, &Emin, u, r, s, t);
bad_p = getbad_primes(Emin);
}
else
{
Pmin = P;
}
// Add local heights at finite primes dividing discr(E) OR denom(P).
// The components for primes dividing denom(P) add to log(denom(x(P)));
// since P=(XZ:Y:Z^3), denom(P)=Z=gcd(XZ,Z^3), called "zroot" here,
// and so the contribution is log(denom(x(P))) = 2*log(zroot).
// This avoids factorizing the denominator.
const bigint& zroot = gcd(Pmin.getX(),Pmin.getZ()); // = cube root of Z
bigfloat h = realheight(Pmin);
#ifdef DEBUG_HEIGHT
cout<<" - real height = "<<h<<"\n";
#endif
// contribution from primes dividing the denoinator:
h += 2*log(I2bigfloat(zroot));
#ifdef DEBUG_HEIGHT
cout<<" - after adding log(denom), height = "<<h<<"\n";
#endif
#ifdef DEBUG_HEIGHT
cout<<" - E (min) = "<<(Curve)Emin<<" with bad primes "<<bad_p<<"\n";
#endif
for ( const auto& p : bad_p)
{
#ifdef DEBUG_HEIGHT
cout<<" - bad prime p = "<<p<<"\n";
#endif
// we already have included the local height at p for primes p
// dividing the denominator
if(ndiv(p,zroot))
{
bigfloat pht = pheight(Pmin,p);
#ifdef DEBUG_HEIGHT
cout<<" - local height at p is "<<pht<<"\n";
#endif
h += pht;
}
#ifdef DEBUG_HEIGHT
else
cout<<" - p divides denominator (zroot="<<zroot<<"), so ignoring\n";
#endif
}
P.height = h;
#ifdef DEBUG_HEIGHT
cout << "height(P) returns "<<h<<endl;
#endif
return h;
}
#undef DEBUG_HEIGHT
bigfloat pheight(const Point& P, const bigint& pr)
// NB The local height at p will only be correctly computed by
// pheight() if the curve is minimal at p
{
#ifdef DEBUG_HEIGHT
cout<<"In pheight with P = "<<P<<" and pr = "<<pr<<endl;
cout<<I2double(pr)<<"\n";
cout<<"(as a bigfloat, pr = "<<I2bigfloat(pr)<<")"<<endl;
#endif
bigint a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,discr;
P.E->getai(a1,a2,a3,a4,a6);
P.E->getbi(b2,b4,b6,b8);
P.E->getci(c4,c6);
discr = getdiscr(*(P.E));
long n = val(pr, discr);
#ifdef DEBUG_HEIGHT
cout<<"n = val(pr, discr) = " << n << endl;
#endif
bigint x,y,z;
P.getcoordinates(x,y,z);
const bigint& zroot = gcd(x,z); // = cube root of z
long vpz = 3*val(pr,zroot);
#ifdef DEBUG_HEIGHT
cout<<"vpz = val(pr, z) = " << vpz << endl;
#endif
const bigint& x2 = x*x;
const bigint& z2 = z*z;
const bigint& xz = x*z;
const bigint& yz = y*z;
long a = val(pr, 3*x2 + 2*a2*xz + a4*z2 - a1*yz) - 2*vpz;
long b = val(pr, 2*y + a1*x + a3*z) - vpz;
long c = val(pr, 3*x2*x2 + b2*x2*xz + 3*b4*x2*z2 + 3*b6*xz*z2 + b8*z2*z2)
-4*vpz;
#ifdef DEBUG_HEIGHT
cout<<"a = " << a << endl;
cout<<"b = " << b << endl;
cout<<"c = " << c << endl;
#endif
// some obvious changes enable calculation of lambda as a rational
// some improvements can be made if this is never to be done
// eg in the above, no need to work with projective coords, just use real x/z
bigfloat halfn = to_bigfloat(n); halfn /= to_bigfloat(2);
bigfloat lambda;
if ( (a<=0) || (b<=0) )
{
lambda = vpz - val(pr,x);
if(lambda<0) lambda=0;
}
else if ( ndiv(pr, c4) )
{
bigfloat m = to_bigfloat(b);
if(halfn<m) m=halfn; // m = min( b , halfn );
lambda = (m*(m-n)) / n;
}
else if ( c>=(3*b) )
lambda = (-2*b) / to_bigfloat(3);
else
lambda = -c / to_bigfloat(4);
bigfloat h = lambda * log( I2bigfloat(pr) );
#ifdef DEBUG_HEIGHT
cout<<"...returning lambda = " << lambda << ", pheight = "<<h<<endl;
#endif
return h;
}
#undef DEBUG_HEIGHT
//#define DEBUG_HEIGHT
bigfloat realheight(const Point& P)
{
bigfloat x,y;
P.getrealcoordinates(x,y);
#ifdef DEBUG_HEIGHT
cout<<"Computing real height of P = " << P <<", x(P) = "<<x<<endl;
#endif
return realheight(x,P.E);
}
bigfloat realheight(const bigfloat& x, const Curvedata* E)
{
#ifdef MPFP // Multi-Precision Floating Point
long original_prec, new_prec;
original_prec = bit_precision();
new_prec = original_prec + 100;
// cout<<"Setting bit precision to "<<new_prec<<endl;
set_bit_precision(new_prec); // does not change output precision
#endif
bigint bb2,bb4,bb6,bb8;
E->getbi(bb2,bb4,bb6,bb8);
bigfloat b2 = I2bigfloat(bb2), b4 = I2bigfloat(bb4),
b6 = I2bigfloat(bb6), b8 = I2bigfloat(bb8);
bigfloat b2dash = b2 - 12;
bigfloat b4dash = b4 - b2 + 6;
bigfloat b6dash = b6 - 2*b4 + b2 - 4;
bigfloat b8dash = b8 - 3*b6 + 3*b4 - b2 + 3;
#ifdef DEBUG_HEIGHT
cout<<"b2, b4, b6, b8 = "<<b2<<", "<<b4<<", "<<b6<<", "<<b8<<"\n";
cout<<"b2dash, b4dash, b6dash, b8dash = "<<b2dash<<", "<<b4dash<<", "<<b6dash<<", "<<b8dash<<"\n";
#endif
bigfloat t, w, z, zw;
bigfloat H = to_bigfloat(4);
// max(4.0, max(abs(b2), max(2*abs(b4), max(2*abs(b6), abs(b8)))));
t=abs(b2); if(t>H) H=t;
t=2*abs(b4); if(t>H) H=t;
t=2*abs(b6); if(t>H) H=t;
t=abs(b8); if(t>H) H=t;
// NB We use decimal precision here since the formula for nlim (from
// Silverman) is given in terms of decimal places required.
long precision = decimal_precision();
#ifdef DEBUG_HEIGHT
cout<<"decimal precision = "<<precision<<endl;
#endif
long nlim=I2long(Iround(ceil( (5.0/3.0)*precision + 0.5 + 0.75*log( 7.0 + (4.0/3.0)*log(H) ))));
nlim *=2;
#ifdef DEBUG_HEIGHT
cout<<"H = "<<H<<"; log(H) = "<<log(H)<<"; using "<<nlim<<" terms in the sum.\n";
#endif
long beta;
if ( abs(x) < 0.5 ) {t = 1 / (x + 1); beta = 0; }
else {t = 1 / x; beta = 1; }
bigfloat mu = -log( abs(t) ), dmu;
bigfloat f = to_bigfloat(1);
#ifdef DEBUG_HEIGHT
cout<<"initial mu = "<<mu<<"\n";
#endif
for (long n = 0; n <= nlim; n++)
{
f /= 4;
if ( beta )
{w = (((b6*t + 2*b4)*t + b2)*t + 4)*t;
z = 1 - t*t*(b4 + t*(2*b6 + t*b8));
zw = z + w;
}
else
{w = (((b6dash*t + 2*b4dash)*t + b2dash)*t + 4)*t;
z = 1 - t*t*(b4dash + t*(2*b6dash + t*b8dash));
zw = z - w;
}
if ( abs(w) <= 2*abs(z) )
{
dmu=f*log(abs(z));
mu += dmu;
t = w/z;
}
else
{
dmu = f*log(abs(zw));
mu += dmu;
t = w/zw;
#ifdef DEBUG_HEIGHT
cout<<"switching...\n";
#endif
beta = ! beta;
}
#ifdef DEBUG_HEIGHT
cout<<"n="<<n<<": z, dmu, mu = "<<"\t"<<z<<"\n\t\t\t"<<dmu<<"\n\t\t\t"<<mu<<"\n";
#endif
}
#ifdef DEBUG_HEIGHT
cout << "returning real height = " << mu << endl;
#endif
#ifdef MPFP // Multi-Precision Floating Point
// cout<<"Setting bit precision back to "<<original_prec<<endl;
set_bit_precision(original_prec); // does not change output precision
#endif
return mu;
}
#undef DEBUG_HEIGHT
bigfloat height_pairing(Point& P, Point& Q)
{
// we avoid doing any real work, especially addition of points,
// if we can.
if(P.is_zero() || Q.is_zero()) return to_bigfloat(0);
else if(P == Q) return height(P) ;
else
{
bigfloat hP = height(P);
bigfloat hQ = height(Q);
Point PQ = P + Q;
return (height(PQ) - hP - hQ)/2;
}
}
//#define DEBUG_REG
// regulator of a list of n points
bigfloat regulator(vector<Point>& P) // nb not const; sets heights when found
{
#ifdef DEBUG_REG
cout<<"In regulator with PointArray = " << P << endl;
#endif
int n = P.size();
if( n <= 0) return to_bigfloat(1);
if(n == 1) return height(P[0]) ;
if(n == 2 )
{
bigfloat pair00 = height(P[0]);
bigfloat pair11 = height(P[1]);
Point Q = P[0] + P[1];
bigfloat h = height(Q);
bigfloat pair01 = (h-pair00-pair11)/2;
return pair00 * pair11 - pair01 * pair01;
}
#ifdef MPFP // use NTL to compute the determinant
// initialize the matrix of pairings
mat_RR height_matrix;
height_matrix.SetDims(n,n);
for (int i = 0; i < n; i++)
{
height_matrix[i][i] = height(P[i]) ;
}
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
Point Q = P[i] + P[j];
bigfloat h = (height(Q) - height_matrix[i][i] - height_matrix[j][j])/2 ;
height_matrix[j][i] = h;
height_matrix[i][j] = h;
}
}
return determinant(height_matrix);
#else // use a naive determinant method
if (n == 3)
{
bigfloat pair[3][3] ;
for (int i = 0; i < 3; i++)
{pair[i][i] = height(P[i]) ;
for (int j = i + 1; j < 3; j++)
{pair[i][j] = pair[j][i] = height_pairing(P[i], P[j]) ; }
}
bigfloat reg = (pair[0][0] * ( pair[1][1] * pair[2][2] - pair[1][2] * pair[1][2] )
- pair[0][1] * ( pair[0][1] * pair[2][2] - pair[1][2] * pair[0][2] )
+ pair[0][2] * ( pair[0][1] * pair[1][2] - pair[1][1] * pair[0][2] )
);
#ifdef DEBUG_REG
cout<<"regulator = " << reg << endl;
#endif
return reg;
}
if (n == 4)
{
bigfloat pair[4][4] ;
for (int i = 0; i < 4; i++)
{pair[i][i] = height(P[i]) ;
for (int j = i + 1; j < 4; j++)
{pair[i][j] = height_pairing(P[i], P[j]) ; }
}
//
// the following explicit expression is courtesy of Maple and AB
// (Maple uses **2, we converted these into explicit squares)
//
// it purports to be the expression for the determinant of our symmetric
// pairing matrix
//
bigfloat reg = (
((2 * pair[1][2] * pair[3][3]-2* pair[1][3] *pair[2][3])*pair[0][1]+
(-pair[1][1]*pair[3][3]+pair[1][3]*pair[1][3])*pair[0][2])
* pair[0][2]+pair[0][0]
*(pair[1][1]*pair[2][2]*pair[3][3]
- pair[1][1]*pair[2][3]*pair[2][3]-pair[1][2]*pair[1][2]*pair[3][3]
+ 2*pair[1][2]*pair[1][3]*pair[2][3]-pair[1][3]*pair[1][3]*pair[2][2])
+ (-pair[2][2]*pair[3][3]+pair[2][3]*pair[2][3])*pair[0][1]*pair[0][1]
+ ((2*pair[1][3]*pair[2][2]-2*pair[1][2]*pair[2][3])*pair[0][1]
+ (2*pair[1][1]*pair[2][3]-2*pair[1][3]*pair[1][2])*pair[0][2]
+ (-pair[1][1]*pair[2][2]+pair[1][2]*pair[1][2])*pair[0][3])
*pair[0][3]
);
return reg;
}
if ( n > MAX_RANK_REG)
{
// n> 50 not yet (could fold into last case)
cout << "## Assuming that the regulator of more than "<<MAX_RANK_REG<<" points is 0" << endl;
return to_bigfloat(0) ;
}
bigfloat pair[MAX_RANK_REG][MAX_RANK_REG] ;
// initialize the matrix of pairings
for (int i = 0; i < n; i++)
{
pair[i][i] = height(P[i]) ;
for (int j = i + 1; j < n; j++)
{
pair[j][i] = pair[i][j] = height_pairing(P[i], P[j]) ;
}
}
// Gaussian elimination
// for the first n - 1 rows
for (int j = 0 ; j < n - 1; j ++)
{// use row j to pivot with
bigfloat pivot = pair[j][j] ;
// kill off rows below row j
for (int i = j + 1; i < n ; i ++)
{bigfloat multiplier = pair[i][j] / pivot ;
// subtract multiplier * row j from row i
//noting the beginning of row i is already zeroed
for (int k = j ; k < n; k++)
{
pair[i][k] -= multiplier * pair[j][k] ;
}
}
}
// now reg is the product of the diagonal entries
bigfloat reg = to_bigfloat(1) ;
for (int d = 0; d < n; d++) reg *= pair[d][d] ;
return reg ;
#endif
}
// end of HEIGHTS.CC
|