1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
|
// htconst.cc: implementations of functions for height bounds
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// Here we implement (1) Silverman, (2) CPS (Cremona/Prickett/Siksek)
// bounds on the difference between naive and canonical height.
#include <eclib/mwprocs.h> // only needed for order_real_roots
#include <eclib/htconst.h>
#include <eclib/realroots.h>
// Code for Silverman bound
double logplus(double x)
{
double ax = fabs(x);
if(ax<1) return 0;
return log(ax);
}
double hj(const Curvedata& CD, double& realjay)
{
bigint c4, c6, njay, djay;
c4=getc4(CD);
c6=getc6(CD);
njay = pow(c4,3);
djay = getdiscr(CD);
if((djay==0)||(njay==0)) {realjay=0; return 0;}
double g = I2double(gcd(njay,djay));
double xnjay = I2double(njay)/g;
double xdjay = I2double(djay)/g;
realjay = xnjay/xdjay;
double x = log(fabs(xnjay));
double y = log(fabs(xdjay));
if(x<y) return y;
else return x;
}
double silverman_bound(const Curvedata& CD)
{
static double log2 = log(2.0);
bigint b2 = getb2(CD);
bigint delta = getdiscr(CD);
double realjay;
double hjay = hj(CD,realjay);
// NB the constant 1.922 = 2*0.961 below is from Bremner's correction
// to Silverman's paper; Silverman has 0.973 givin 2*0.973 = 1.946.
double mu = 1.922 + hjay/12
+ log(fabs(I2double(delta)))/6
+ logplus(realjay)/6
+ logplus(I2double(b2)/12);
if(b2!=0) mu += log2;
return mu;
}
// Cremona-Prickett-Siksek height bound, August 2002
// NB: We assume a minimal model here!
//#define DEBUG_CPS
//#define TEST_CPS
double cps_real(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8);
double egr_height_constant(const Curvedata& CD)
{
double bd = cps_real(I2bigfloat(getb2(CD)),I2bigfloat(getb4(CD)),
I2bigfloat(getb6(CD)),I2bigfloat(getb8(CD)));
if (abs(bd) < 1e-30) bd=0; // otherwise the output sometimes prints as "-0"
return bd;
}
double cps_bound(const Curvedata& CD)
{
double bd = cps_real(I2bigfloat(getb2(CD)),I2bigfloat(getb4(CD)),
I2bigfloat(getb6(CD)),I2bigfloat(getb8(CD)));
#ifdef DEBUG_CPS
cout<<"In cps_bound() for "<<(Curve)CD<<endl;
cout<<"cps_real = "<<bd<<endl;
#endif
CurveRed CR(CD);
vector<bigint> plist = getbad_primes((Curvedata&)CD);
for( const auto& q : plist)
{
if(getc_p(CR,q)==1)
{
#ifdef DEBUG_CPS
cout<<"q = "<<q<<", alpha = 0 since c_q=0"<<endl;
cout<<"sum so far = "<<bd<<endl;
#endif
continue;
}
double alpha =0;
int m, Kc = getKodaira_code(CR,q).code;
switch (Kc%10){
case 0: // Im
m = Kc/10;
alpha = (m%2 ? double(m*m-1)/double(4*m) : double(m)/4);
break;
case 1: // I*m
m = (Kc - 1)/10;
alpha = (m==0? 1 : (getc_p(CR,q)==2? 1 : double(m+4)/4));
break;
case 3: // III
alpha = 0.5;
break;
case 4: // IV
alpha = double(2)/3;
break;
case 5: // IV*
alpha = double(4)/3;
break;
case 6: // III*
alpha = 1.5;
break;
default: // II, II*: c_p=1
break;
};
bd += alpha*log(double(I2long(q)));
#ifdef DEBUG_CPS
cout<<"q = "<<q<<", alpha = "<<alpha<<", q-term = "<< alpha*log(double(I2long(q))) <<endl;
cout<<"sum so far = "<<bd<<endl;
#endif
}
if (abs(bd) < 1e-30) bd=0; // otherwise the output sometimes prints as "-0"
return bd;
}
// Implementation for the real place originally by Nigel Smart, here
// rewritten by JC, 22/8/02
// NB the quantities which here are called dv and dvd are those which
// in Cremona, Prickett and Siksek (JNT 2006, lemma 9) are denoted e,
// e' and *not* those denoted d,d'. So the value of egr_real() and
// egr_height_const() is -log(eps_infty)/3 (=-log(alpha) in ANTS7 paper).
bigfloat calc_dvd_inf(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8);
bigfloat calc_dv_inf(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8);
bigfloat old_calc_dvd_inf(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8, const bigfloat& del);
bigfloat old_calc_dv_inf(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8, const bigfloat& del);
double cps_real(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8)
{
bigfloat zero=to_bigfloat(0);
bigfloat htc, dv, dvd;
#ifdef MPFP
long original_prec, prec;
prec = original_prec = bit_precision();
dv = zero;
dvd = zero;
while (dv==0 || dvd==0)
{
dv=calc_dv_inf(b2,b4,b6,b8);
dvd=calc_dvd_inf(b2,b4,b6,b8);
if (dv==0 || dvd==0)
{
#ifdef DEBUG_CPS
cout << "In cps_real(), with bit precision " << prec << " we have dv="<<dv<<", dvd="<<dvd << endl;
#endif
prec *=2;
set_bit_precision(prec); // does not change output precision
#ifdef DEBUG_CPS
cout << " -- doubling bit precision to " << prec << endl;
#endif
}
}
if (prec!=original_prec)
{
set_bit_precision(original_prec); // does not change output precision
#ifdef DEBUG_CPS
cout << " --resetting bit precision back to " << original_prec << endl;
#endif
}
#else // using C double precision it may be impossible to compute dv, dvd
dv=calc_dv_inf(b2,b4,b6,b8);
dvd=calc_dvd_inf(b2,b4,b6,b8);
if (dv==0 || dvd==0)
{
cout << "In cps_real(), using C doubles we have dv="<<dv<<", dvd="<<dvd << endl;
cout << "Unable to compute height constant." << endl;
return zero;
}
#endif
#ifdef DEBUG_CPS
cout << "dv=" << dv << endl;
cout << "dvd=" << dvd << endl;
#endif
if(dv==-1)
{
if(dvd==-1)
htc = zero;
else
{
if(dvd>0) htc = -log(dvd)/3;
else
{
cerr<<"Precision problem in cps_real(): dvd = "<<dvd<<" but should be >0"<<endl;
cerr<<"Height constant will not be correct"<<endl;
htc=zero;
}
}
}
else
if(dvd==-1)
{
if(dv>0)
htc = -log(dv)/3;
else
{
cerr<<"Precision problem in cps_real(): dv = "<<dv<<" but should be >0"<<endl;
cerr<<"Height constant will not be correct"<<endl;
htc=zero;
}
}
else
{
bigfloat mindv=min(dv,dvd);
if(mindv>0) htc = -log(mindv)/3;
else
{
cerr<<"Precision problem in cps_real(): min(dv,dvd) = "<<mindv<<" but should be >0"<<endl;
cerr<<"Height constant will not be correct"<<endl;
htc=zero;
}
}
#ifdef DEBUG_CPS
cout<<"cps_real() returns -log(min(dv,dvd))/3 = "<<htc<<endl;
#endif
#ifdef MPFP
double ans;
doublify(htc,ans);
return ans;
#else
return htc;
#endif
}
// coeff has length 5 but may start with leading zeros
// returns real roots in [-1,1]
vector<bigfloat> roots11( const vector<bigfloat>& coeff );
inline vector<bigfloat> set_coeff(const bigfloat& c0, const bigfloat& c1, const bigfloat& c2, const bigfloat& c3, const bigfloat& c4)
{
vector<bigfloat> coeff = {c0,c1,c2,c3,c4};
return coeff;
}
inline vector<bigfloat> set_coeff(const bigfloat& c0, const bigfloat& c1, const bigfloat& c2, const bigfloat& c3)
{
vector<bigfloat> coeff = {c0,c1,c2,c3};
return coeff;
}
inline vector<bigfloat> set_coeff(const bigfloat& c0, const bigfloat& c1, const bigfloat& c2)
{
vector<bigfloat> coeff = {c0,c1,c2};
return coeff;
}
inline vector<bigfloat> set_reverse_coeff(const bigfloat& c0, const bigfloat& c1, const bigfloat& c2, const bigfloat& c3, const bigfloat& c4)
{
return set_coeff(c4,c3,c2,c1,c0);
}
vector<bigfloat> reals_in ( vector<bigcomplex>& v);
vector<bigfloat> reals_in_11 ( vector<bigcomplex>& v);
// Procedure to calculate dv' for the infinite prime
bigfloat calc_dvd_inf(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8)
{
bigfloat zero=to_bigfloat(0), one=to_bigfloat(1), two=to_bigfloat(2), three=to_bigfloat(3), four=to_bigfloat(4);
bigfloat rx;
bigfloat dvd=zero,x2,Fx,Gx;
#ifdef DEBUG_CPS
cout<<"\nIn calc_dvd_inf"<<endl;
cout<<"b2="<<b2<<"\nb4="<<b4<<"\nb6="<<b6<<"\nb8="<<b8<<endl;
#endif
vector<bigfloat> rts; // holds real roots of F, G, etc
std::set<bigfloat> crit_pts; // use a set, so we don't get any duplicates
std::set<bigfloat> F_roots;
crit_pts.insert(one);
crit_pts.insert(-one);
#ifdef DEBUG_CPS
cout<<"crit_pts = "<<crit_pts<<endl;
#endif
// Put the roots of G,F',G',F+G,F-G into crit_pts:
// Keep the roots of F separate (see comment below)
// Roots of F
rts=realroots11(set_coeff(b6,2*b4,b2, four,zero));
F_roots.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of F: "<<rts<<endl;
cout<<"After adding roots of F, F_roots = "<<F_roots<<endl;
#endif
// Roots of G
rts=realroots11(set_coeff(-b8,-two*b6,-b4,zero,one));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of G: "<<rts<<endl;
cout<<"After adding roots of G, crit_pts = "<<crit_pts<<endl;
#endif
// Roots of F+G
rts=realroots11(set_coeff(b6-b8,two*(b4-b6),b2-b4, four,one));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of F+G: "<<rts<<endl;
cout<<"After adding roots of F+G, crit_pts = "<<crit_pts<<endl;
#endif
// Roots of G-F // Change from NPS
rts=realroots11(set_coeff(-(b6+b8),-two*(b4+b6),-(b2+b4), -four,one));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of F-G: "<<rts<<endl;
cout<<"After adding roots of F-G, crit_pts = "<<crit_pts<<endl;
#endif
// Roots of G'
rts=realroots11(set_coeff(-two*b8,-three*b6,-b4, zero));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of G': "<<rts<<endl;
cout<<"After adding roots of G', crit_pts = "<<crit_pts<<endl;
#endif
// Roots of F'
rts=realroots11(set_coeff(two*b6,three*b4,b2,two));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of F': "<<rts<<endl;
cout<<"After adding roots of F', crit_pts = "<<crit_pts<<endl;
#endif
// Evaluate max(|F(x)|,|G(x)|) at each of the x-values in array
// crit_pts for which F(x)>=0: First take max|G(x)| over the roots
// of F in [-1,1] -- this avoids the possibility that evaluating f
// at one of its roots gives a slightly negative value causing a
// possibly relevant value of G(x) to be ignored: observation of
// Samir 25/07/04
int first=1;
for (const auto& x : F_roots)
{
x2=x*x;
Gx=abs(1-b4*x2-two*b6*x*x2-b8*x2*x2);
#ifdef DEBUG_CPS
cout<<"x="<<x<<", Gx="<<Gx<<endl;
#endif
if (first) { dvd=Gx; first=0;}
else if (dvd>Gx) { dvd=Gx; }
#ifdef DEBUG_CPS
cout<<"dvd so far ="<<dvd<<endl;
#endif
}
for (const auto& x : crit_pts)
{
x2=x*x;
Fx=(four*x+b2*x2+two*b4*x*x2+b6*x2*x2);
#ifdef DEBUG_CPS
cout<<"x="<<x<<", Fx="<<Fx<<endl;
#endif
if(Fx<0) continue;
Gx=abs(one-b4*x2-two*b6*x*x2-b8*x2*x2);
#ifdef DEBUG_CPS
cout<<"x="<<x<<", Gx="<<Gx<<endl;
#endif
rx=max(Fx,Gx);
if (first) { dvd=rx; first=0;}
else if (dvd>rx) { dvd=rx; }
#ifdef DEBUG_CPS
cout<<"dvd so far ="<<dvd<<endl;
#endif
}
if(first)
return -one;
else
return dvd;
}
// Procedure to calculate dv for the infinite prime
bigfloat calc_dv_inf(const bigfloat& b2, const bigfloat& b4, const bigfloat& b6, const bigfloat& b8)
{
bigfloat zero=to_bigfloat(0), one=to_bigfloat(1), two=to_bigfloat(2), six=to_bigfloat(6), four=to_bigfloat(4);
bigfloat rx;
bigfloat dv=zero,x2,fx,gx;
#ifdef DEBUG_CPS
cout<<"\nIn calc_dv_inf"<<endl;
cout<<"b2="<<b2<<"\nb4="<<b4<<"\nb6="<<b6<<"\nb8="<<b8<<endl;
#endif
vector<bigfloat> rts; // holds real roots of f, g, etc
std::set<bigfloat> crit_pts; // use a set, so we don't get any duplicates
std::set<bigfloat> f_roots;
crit_pts.insert(one);
crit_pts.insert(-one);
#ifdef DEBUG_CPS
cout<<"crit_pts = "<<crit_pts<<endl;
#endif
// Put the roots of g,f',g',f+g,f-g into crit_pts:
// Keep the roots of f separate (see comment below)
// Roots of f
rts=realroots11(set_coeff(four,b2,two*b4,b6));
f_roots.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of f: "<<rts<<endl;
cout<<"After adding roots of f, f_roots = "<<f_roots<<endl;
#endif
// Roots of g
rts=realroots11(set_coeff(one, zero,-b4,-two*b6,-b8));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of g: "<<rts<<endl;
cout<<"After adding roots of g, crit_pts = "<<crit_pts<<endl;
#endif
// Roots of f+g
rts=realroots11(set_coeff(one, four, b2-b4,two*(b4-b6),b6-b8));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of f+g: "<<rts<<endl;
cout<<"After adding roots of f+g, crit_pts = "<<crit_pts<<endl;
#endif
// Roots of g-f // Change from NPS
rts=realroots11(set_coeff(one,-four,-(b2+b4),-two*(b4+b6),-(b6+b8)));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of f-g: "<<rts<<endl;
cout<<"After adding roots of f-g, crit_pts = "<<crit_pts<<endl;
#endif
// Roots of g'
rts=realroots11(set_coeff(two,zero,-b4,-b6));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of g': "<<rts<<endl;
cout<<"After adding roots of g', crit_pts = "<<crit_pts<<endl;
#endif
// Roots of f'
rts=realroots11(set_coeff(six,b2,b4));
crit_pts.insert(rts.begin(),rts.end());
#ifdef DEBUG_CPS
cout<<"relevant roots of f': "<<rts<<endl;
cout<<"After adding roots of f', crit_pts = "<<crit_pts<<endl;
#endif
// Evaluate max(|f(x)|,|g(x)|) at each of the x-values in array
// crit_pts for which f(x)>=0: First take max|g(x)| over the roots
// of f in [-1,1] -- this avoids the possibility that evaluating f
// at one of its roots gives a slightly negative value causing a
// possibly relevant value of g(x) to be ignored: observation of
// Samir 25/07/04
int first=1;
for( const auto& x : f_roots)
{
x2=x*x;
gx=abs(x2*x2-b4*x2-2.0*b6*x-b8);
#ifdef DEBUG_CPS
cout<<"x="<<x<<", gx="<<gx<<endl;
#endif
if (first) { dv=gx; first=0;}
else if (dv>gx) { dv=gx; }
#ifdef DEBUG_CPS
cout<<"dv so far ="<<dv<<endl;
#endif
}
for( const auto& x : crit_pts)
{
x2=x*x;
fx=(4.0*x*x2+b2*x2+2.0*b4*x+b6);
#ifdef DEBUG_CPS
cout<<"x="<<x<<", fx="<<fx<<endl;
#endif
if(fx<0) continue;
gx=abs(x2*x2-b4*x2-2.0*b6*x-b8);
#ifdef DEBUG_CPS
cout<<"x="<<x<<", gx="<<gx<<endl;
#endif
rx=max(fx,gx);
if (first) { dv=rx; first=0;}
else if (dv>rx) { dv=rx; }
#ifdef DEBUG_CPS
cout<<"dv so far ="<<dv<<endl;
#endif
}
if(first)
return -one;
else
return dv;
}
//#define HTB_DEBUG
// returns lower bound for height of non-torsion points, following
// Cremona & Siksek in ANTS7. If egr==1, return a lower bound for the
// height of nontorsion pints with everywhere good reduction.
bigfloat lower_height_bound(const Curvedata& CD, int egr)
{
CurveRed CR(CD);
CurveHeightConst CHC(CR);
CHC.compute();
bigfloat lambda=CHC.get_value(); // assumes egr
if (!egr)
{
long c = I2long(global_Tamagawa_exponent(CR, 1)); // 1 means include R
lambda /= (c*c);
}
return lambda;
}
// This gives a lower bound on non-torsion points, by searching, given
// the regulator of a known subgroup
// If point search bound is greater than this, output a warning
// message and reduce to this value:
const int max_search_bound = 18;
bigfloat lower_height_bound_search(const Curvedata& CD, const bigfloat& reg)
{
int verbose=0;
// Find optimally x-shifted curve for better point searching...
bigint x_shift;
Curvedata C_opt = opt_x_shift(CD,x_shift);
int shift_flag = !is_zero(x_shift);
if(shift_flag&&verbose)
cout<<"Using shifted model "<<(Curve)C_opt<<" for searching"<<endl;
double hc = height_constant(C_opt);
if(verbose)
cout<<"height bound constant for shifted curve = "<<hc<<endl;
double hc1;
doublify(reg,hc1);
hc1 = (hc+hc1/(3.9));
if(hc1>12) hc1=12; // so hc1 = min(12,R/4+ht.const.)
double hcx = hc1-hc; // = min(12-ht.const., R/4)
if(hcx<0) {hcx=0.1; hc1=hcx+hc;}
if(verbose)
{
cout<<"Searching for all points to naive height "<<hc1<<endl;
}
if(hc1>max_search_bound)
{
cout<<"\n***Warning: search bound of "<<hc1
<<" reduced to "<<max_search_bound
<<" -- points may not be saturated***"<<endl;
hc1=max_search_bound;
}
point_min_height_finder pmh(&C_opt,0,verbose);
pmh.search(to_bigfloat(hc1));
bigfloat lambda=pmh.get_min_ht();
Point Pmin = pmh.get_min_ht_point();
if(lambda==0)
{
lambda=hcx;
if(verbose)
cout<<"No points found, lambda = "<<lambda<<endl;
}
else
{
if(verbose)
cout<<"Min height of points found = "<<lambda<<" (point "<<Pmin<<")"<<endl;
if(lambda>hcx) lambda=hcx;
if(verbose)
cout<<"Using lambda = "<<lambda<<endl;
}
return lambda;
}
static long fact_tab[13] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600};
bigfloat factorial(long n)
{
if(n<2)
return to_bigfloat(1);
if(n<13)
return to_bigfloat(fact_tab[n]);
return n*factorial(n-1);
}
bigfloat Gamma_n(long n) // Gamma(n) = (n-1)!
{
return factorial(n-1);
}
bigfloat Gamma_n_plus_half(long n) // Gamma(n+1/2) = (2n)!sqrt(pi) / (4^n*n!)
{
// cout<<"n = "<<n<<endl;
// cout<<"factorial(n) = "<< factorial(n) <<endl;
// cout<<"factorial(2*n) = "<< factorial(2*n) <<endl;
// cout<<"2^(2*n) = "<< power2_RR(2*n) <<endl;
// cout<<"sqrt(pi) = "<< sqrt(Pi()) <<endl;
return sqrt(Pi()) * factorial(2*n) / (power2_RR(2*n) * factorial(n));
}
static long gam_tab[9] = {1, 1, 4, 2, 4, 8, 64, 64, 256};
bigfloat lattice_const(int r)
// Return gamma_r such that for a lattice of rank r and determinant D,
// the shortest nonzero vector has length at most gamma_r*D^(1/r).
//
// for r = 1 2 3 4 5 6 7 8
// we have
// gamma_r^r = 1 4/3 2 4 8 64/3 64 256
//
// while for larger r we use Blichfeld's bound
// (2/pi)*Gamma(2+r/2)^(2/r) (see Wikipedia
// https://en.wikipedia.org/wiki/Hermite_constant)
//
//
{
if (r<=8)
{
bigfloat gam = to_bigfloat(gam_tab[r]);
if (r%4==2)
gam /= to_bigfloat(3);
return pow(gam, inv(to_bigfloat(r)));
}
else
{
bigfloat gam = (r%2? Gamma_n_plus_half((r+3)/2): Gamma_n(2+r/2));
return 2 * inv(Pi()) * pow(sqr(gam), inv(to_bigfloat(r)));
}
}
point_min_height_finder::point_min_height_finder(Curvedata* EE, int egr, int verb)
:E(EE), egr_flag(egr), verbose(verb), min_ht(to_bigfloat(0))
{
Pmin=Point(E);
E -> getai(a1,a2,a3,a4,a6);
if(egr_flag) CG=ComponentGroups(*E);
iso = !((a1==0)&&(a3==0));
c.resize(4);
if(iso)
{
c[0]=16*getb6(*E);
c[1]= 8*getb4(*E);
c[2]= getb2(*E);
c[3]=1;
}
else
{
c[0]=a6;
c[1]=a4;
c[2]=a2;
c[3]=1;
}
}
int point_min_height_finder::process(const bigint& x, const bigint& y, const bigint& z)
{
bigint rz; isqrt(z,rz);
bigint x1=x*rz, y1=y, z1=z*rz;
if(iso)
{
y1 -= (a1*x1+4*a3*z1);
x1 *= 2;
z1 *= 8;
}
Point P(E, x1,y1,z1);
if(P.isvalid())
{
if(order(P)<0) {
int egr=1; bigint p0;
if(egr_flag) egr=CG.HasGoodReduction(P,p0);
if(egr)
{
bigfloat hP=height(P);
if(is_real_zero(hP)) return 0;
if(verbose)
cout<<"Found point "<<P<<" with height "<<hP<<endl;
all_points.push_back(P);
if((min_ht==0)||(hP<min_ht))
{
if(verbose)
cout<<"New minimum height = "<<hP<<endl;
min_ht=hP;
Pmin=P;
}
}
else
{
if(verbose)
cout<<"Found point "<<P
<<" but ignoring as not egr (bad reduction at "<<p0<<")"<<endl;
}
}
}
else
{
cout<<"Raw point x,y,z = "<<x<<", "<<y<<", "<<z<<endl;
cout<<"converted point P = "<<P<<" --not on curve!"<<endl;
}
return 0;
}
void point_min_height_finder::search(bigfloat h_lim)
{
if(iso) h_lim+=2.08;
// if(iso) cout<<"Adding log(8) to h_lim, increasing it to "<<h_lim<<endl;
qsieve s(this, 3, c, h_lim, (verbose>1));
bigcomplex c1(I2bigfloat(c[2])),
c2(I2bigfloat(c[1])),
c3(I2bigfloat(c[0]));
vector<bigcomplex> roots=solvecubic(c1,c2,c3);
// cout<<"solvecubic("<<c1<<","<<c2<<","<<c3<<") returns "<<roots<<endl;
vector<double> bnd(3);
int nrr=order_real_roots(bnd,roots);
s.set_intervals(bnd,nrr,1);
s.search();
}
//#define debugLB
///////////////////////////////////////////////////////////////////////
//
// class Interval represents a closed interval [lh,rh] where either
// empty=1; or empty=0 and lh <= rh; flags rhinf, lhinf denote
// rh=infty and lh=-infty resp.
//
///////////////////////////////////////////////////////////////////////
ostream& operator<< (ostream& os, const Interval& I)
{
if(I.empty) os<<"[]";
else
{
os<<"[";
if(I.lhinf) os << "-infty"; else os << I.lh;
os << ",";
if(I.rhinf) os << "+infty"; else os << I.rh;
os << "]";
}
return os;
}
void Interval::intersect(const Interval& I)
{
if(empty) return;
if(I.empty) {empty=1; return;}
if(lhinf)
{
lhinf=I.lhinf; lh=I.lh;
}
else if(!I.lhinf) lh=max(lh,I.lh);
if(rhinf)
{
rhinf=I.rhinf; rh=I.rh;
}
else if(!I.rhinf) rh=min(rh,I.rh);
if((!lhinf)&&(!rhinf)&&(lh>rh)) empty=1;
}
vector<Interval> intersect(const vector<Interval>& L1, const vector<Interval>& L2)
{
vector<Interval> ans;
for( const auto& I : L1)
for( const auto& J : L2)
{
Interval K = intersect(I,J);
if(!K.is_empty())
ans.push_back(K);
}
return ans;
}
///////////////////////////////////////////////////////////////////////
//
// class Interval01 represents a closed subinterval [lh,rh] of [0,1],
// where either empty=1; or empty=0 and lh <= rh.
//
///////////////////////////////////////////////////////////////////////
ostream& operator<< (ostream& os, const Interval01& I)
{
if(I.empty)
os<<"[]";
else
os<<"[" << I.lh << "," << I.rh << "]";
return os;
}
void Interval01::intersect(const Interval01& I)
{
if(empty) return;
if(I.empty) {empty=1; return;}
lh=max(lh,I.lh);
rh=min(rh,I.rh);
empty=(lh>rh);
}
vector<Interval01> intersect(const vector<Interval01>& L1,
const vector<Interval01>& L2)
{
vector<Interval01> ans;
for( const auto& I : L1)
for( const auto& J : L2)
{
Interval01 K = intersect(I,J);
if(!K.is_empty()) ans.push_back(K);
}
return ans;
}
Interval01 operator/(const Interval01& I, const long n)
{
if(I.empty) return I;
return Interval01(I.lh/to_bigfloat(n),I.rh/to_bigfloat(n));
}
Interval01 operator+(const Interval01& I, const bigfloat& shift)
{
if(I.empty) return I;
return Interval01(I.lh+shift,I.rh+shift);
}
////////////////////////////
//
// Local exponent function
//
////////////////////////////
// returns the exponent of the reduction of CD mod p (i.e. of
// E^0(Qp)/E^1(Qp), or of E^ns(F_p))
//
// NB for good reduction and p>3 we can use the curvemodqbasis class,
// but that is not implemented for p=2, 3. We also need special code
// for bad reduction.
long exponent(CurveRed& CR, long p)
{
bigint pp(p);
int ord_p_N = getord_p_N(CR, pp);
if (ord_p_N>1)
// additive reduction, cyclic of order p
{
return p;
}
if (ord_p_N==1)
// multiplicative reduction, cyclic:
// order p-1 if split, i.e. root number -1
// order p+1 if split, i.e. root number +1
{
return p + LocalRootNumber(CR, pp);
}
// good reduction
if (p>3)
{
curvemodqbasis Emodq(CR,pp);
return I2long(Emodq.get_exponent());
}
// now p=2 or 3
int np = 1 + p - I2long(Trace_Frob(CR,pp));
if (p==2 || np!=4)
return np; // exponent=order
// Now p==3, and order=4, test whether we have full 2-torsion
// The b-invariants are (0, 2, _, 2) for C4 and (0,1,0,2) for
// C2xC2; so looking at b4 suffices:
return ((posmod(getb4(CR),3)==1)? 2 : 4);
}
///////////////////////////////////////////////////////////////////////
//
// Implementation of class CurveHeightConst
//
///////////////////////////////////////////////////////////////////////
CurveHeightConst::CurveHeightConst(CurveRed& CR)
: CurveRed(CR), Cperiods(CR)
{
c = to_bigfloat(egr_height_constant(*this)); // =-log(alpha) in ANTS7
e3 = get_e3();
n_max=10;
#ifdef debugLB
cout<<"e3 = "<<e3<<endl;
cout<<"archContrib = log(epsilon)/3 = "<<c<<endl;
cout<<"n_max = "<<n_max<<endl;
#endif
}
long CurveHeightConst::e_p(long p)
{
auto pe = ann.find(p);
if (pe!=ann.end())
return pe->second;
long e = exponent(*this,p);
ann[p] = e;
return e;
}
bigfloat CurveHeightConst::D(long n) // D_E(n) in the paper
{
auto DEn = DE.find(n);
if (DEn!=DE.end())
{
#ifdef debugLB
cout << "stored D("<<n<<") = "<< DEn->second <<endl;
#endif
return DEn->second;
}
// else compute and store it:
bigfloat ans = to_bigfloat(0);
primevar pr;
long p, e, pmax = (n+1)*(n+1);
for (p=pr.value(); p<pmax; pr++, p=pr.value())
{
e = e_p(p);
#ifdef debugLB
// cout << " p="<<p<<", e_p="<<e<<endl;
#endif
if(divides(e, n))
ans+=2*(1+val(p,n/e))*log(p);
}
#ifdef debugLB
cout << "D("<<n<<") = "<< ans<<endl;
#endif
DE[n] = ans;
return ans;
}
void CurveHeightConst::compute_phase1()
{
int success;
bigfloat target=to_bigfloat(1), fac=to_bigfloat(2);
// Step 1: find a value of target which succeeds but fac*target fails.
// The former is called "lower" and the latter "upper":
success=test_target(target,n_max);
if(success)
{
lower=target;
while(success)
{
target*=fac;
success=test_target(target,n_max);
}
upper=target; lower=target/fac;
}
else
{
upper=target;
while(!success)
{
target/=fac;
n_max+=5;
success=test_target(target,n_max);
}
lower=target; upper=target*fac;
}
#ifdef debugLB
cout<<"Initial interval for LB = ["<<lower<<","<<upper<<"]"<<endl;
#endif
}
void CurveHeightConst::compute_phase2()
{
int success;
// Step 2: repeatedly test lower*sqrt(fac) and replace either lower or
// upper by it and replace fac by sqrt(fac).
int i,nsteps=1000; // just an upper bound
bigfloat tolerance=to_bigfloat(0.001); // will stop when |upper-lower|<tolerance
bigfloat target=to_bigfloat(1), fac=to_bigfloat(2);
for(i=0; i<nsteps; i++)
{
fac=sqrt(fac);
target=lower*fac;
success=test_target(target,n_max);
if(success) {lower=target;} else {upper=target;}
#ifdef debugLB
cout<<"After "<<(i+1)<<" refinements, interval for LB = ["
<<lower<<","<<upper<<"]"<<endl;
#endif
if(upper-lower<tolerance) return;
}
}
int CurveHeightConst::test_target(const bigfloat& target, long k)
{
for(int n=1; n<k; n++)
if(Bnmu(n,target) < to_bigfloat(1))
return 1;
return canonicalHeightInterval01(target,k).size()==0;
}
vector<Interval01> CurveHeightConst::canonicalHeightInterval01(const bigfloat& target, long k)
{
vector<Interval01> solution;
solution.push_back(Interval01(to_bigfloat(0.5),to_bigfloat(1)));
// i.e. image of [e3,+infty] under psi
#ifdef debugLB
cout<<"testing target bound "<<target<<" with k = "<<k<<endl;
cout<<"Starting interval: "<<solution<<endl;
#endif
for(int n=1; n<=k; n++)
{
#ifdef debugLB
cout<<"n = "<<n<<endl;
#endif
bigfloat B=Bnmu(n,target); // = B_n(target) in the paper
#ifdef debugLB
cout<<"B_"<<n<<"("<<target<<") = "<<B<<endl;
#endif
if(B > 1.0e100) break;
vector<Interval01> t=solveLEQ01(n,B);
solution=intersect(solution,t);
#ifdef debugLB
cout<<"intervals from solveLEQ01: "<<t<<endl;
cout<<"intervals now: "<<solution<<endl;
#endif
if(solution.size()==0) return solution;
t=solveGEQ01(n,-B);
solution=intersect(solution,t);
#ifdef debugLB
cout<<"intervals from solveGEQ01: "<<t<<endl;
cout<<"intervals now: "<<solution<<endl;
#endif
if(solution.size()==0) return solution;
}
return solution;
}
// Returns a list of subintervals of [0,1] containing the elliptic
// logs of P for which x(nP) <= B
vector<Interval01> CurveHeightConst::solveLEQ01(long n, const bigfloat& B)
{
#ifdef debugLB
cout<<"solveLEQ01("<<n<<","<<B<<")"<<endl;
#endif
vector<Interval01> ans;
if(B < e3) return ans;
#ifdef debugLB
cout<<"B = "<<B<<endl;
#endif
bigfloat x0=psi(B);
#ifdef debugLB
cout<<"x0 = psi(B) = "<<x0<<endl;
#endif
bigfloat oneovern = to_bigfloat(1)/to_bigfloat(n);
Interval01 I(1-x0,x0); I=I/n;
#ifdef debugLB
cout<<"interval: "<<I<<endl;
#endif
for(int i=0; i<n; i++, I=I+oneovern) {ans.push_back(I);}
return ans;
}
// Returns a list of subintervals of [0,1] containing the elliptic
// logs of P for which x(nP) >= B
vector<Interval01> CurveHeightConst::solveGEQ01(long n, const bigfloat& B)
{
if(B <= e3)
{
vector<Interval01> ans;
ans.push_back(Interval01()); // i.e.[0,1]
return ans;
}
vector<Interval01> ans;
bigfloat x0=psi(B);
bigfloat oneovern = to_bigfloat(1)/to_bigfloat(n);
Interval01 I(to_bigfloat(0),1-x0); I=I/n;
for(int i=0; i<n; i++, I=I+oneovern) {ans.push_back(I);}
I=Interval01(x0,to_bigfloat(1)); I=I/n;
for(int i=0; i<n; i++, I=I+oneovern) {ans.push_back(I);}
return ans;
}
// mimic gp's ellordinate(): given a real x, returns a vector of
// length 0,1 or 2 containing those y for which [x,y] is on the curve;
// if there are two such values, the largest is first.
vector<bigfloat> CurveHeightConst::ordinates(const bigfloat& x)
{
vector<bigfloat> ans;
static const bigfloat four=to_bigfloat(4), two=to_bigfloat(2);
bigfloat d = ((four*x+I2bigfloat(b2))*x+(two*I2bigfloat(b4)))*x+I2bigfloat(b6);
if(d<0) return ans;
bigfloat y = -(I2bigfloat(a1)*x+I2bigfloat(a3))/two;
if(d==0) {ans.push_back(y); return ans;}
d=sqrt(d)/two; // positive
ans.push_back(d+y); // the larger value
ans.push_back(-d+y); // the smaller value
return ans;
}
// elliptic log function (called psi in the paper) with domain
// [e3,infty], codomain [0.5,1]
bigfloat CurveHeightConst::psi(const bigfloat& x)
{
if(x<e3)
{
cerr<<"Error in CurveHeightConst::psi(): x="<<x<<" < e3 = "<<e3<<endl;
return to_bigfloat(0);
}
// cout<<"computing psi(x) with x = "<<x<<endl;
// cout<<"ordinates: "<<ordinates(x)<<endl;
bigfloat y = ordinates(x)[0];
// cout<<"y = "<<y<<endl;
bigcomplex z = pointtoz(x,y);
// cout<<"z = "<<z<<endl;
return real(z/get_real_period()); // in [0.5,1]
}
|