1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// illl.cc: implementations of functions for integer LLL
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/illl.h>
//#define DEBUG_LLL
//#define TRACE_LLL
bigint sdot(const vector<vec_m>& b, int i, int j)
{
bigint ans(0);
const vec_m& g=b[0], bi=b[i], bj=b[j];
int n=dim(g);
for(int k=1; k<=n; k++)
ans += (g[k]*bi[k]*bj[k]);
return ans;
}
void show(const int n, const vector<vec_m>& b, const vector<vector<bigint>>& lambda, const vector<bigint>& d)
{
int i=0, j;
cout<<"Vectors:\n";
for (const auto& bi : b)
{
if (i) cout<<bi<<endl;
i++;
}
cout<<endl;
cout<<"d: ";
for ( const auto& di : d) cout<<di<<"\t";
cout<<endl;
cout<<"Lambda matrix:\n";
for(i=1; i<=n; i++)
{
for(j=1; j<=i; j++)
if(j==i) cout<<d[i]<<"\t";
else cout<<lambda[i-1][j-1]<<"\t";
cout<<endl;
}
cout<<endl;
}
void redi(const int n, const int k, const int l,
vector<vec_m>& b, vector<vector<bigint>>& lambda, const vector<bigint>& d)
{
#ifdef TRACE_LLL
cout<<"R"<<k;
#endif
#ifdef DEBUG_LLL
cout<<"In redi with k="<<k<<", l="<<l<<endl;
show(n,b,lambda,d);
#endif
int i;
bigint lkl=lambda[k-1][l-1], dl=d[l], q;
nearest(q,lkl,dl); // nearest integer to lkl/dl
if(is_zero(q))
return;
b[k]-=q*b[l];
lambda[k-1][l-1]-=q*dl;
for(i=1; i<l; i++) lambda[k-1][i-1]-=q*lambda[l-1][i-1];
#ifdef DEBUG_LLL
cout<<"Leaving redi with k="<<k<<", l="<<l<<endl;
show(n,b,lambda,d);
#endif
}
void swapi(const int n, const int k, const int kmax,
vector<vec_m>& b, vector<vector<bigint>>& lambda, vector<bigint>& d)
{
#ifdef TRACE_LLL
cout<<"S"<<k<<endl;
#endif
#ifdef DEBUG_LLL
cout<<"In swapi with k="<<k<<", kmax="<<kmax<<endl;
show(n,b,lambda,d);
#endif
bigint t, lam, bb, dk=d[k], dk1=d[k-1];
int i, j;
std::swap(b[k-1],b[k]);
for(j=1; j<=k-2; j++)
{
t = lambda[k-1][j-1];
lambda[k-1][j-1]=lambda[k-2][j-1];
lambda[k-2][j-1]=t;
}
lam = lambda[k-1][k-2];
bb = (d[k-2]*dk+sqr(lam))/dk1;
for(i=k+1; i<=kmax; i++)
{
t = lambda[i-1][k-1];
lambda[i-1][k-1] = (dk*lambda[i-1][k-2]-lam*t)/dk1;
lambda[i-1][k-2] = (bb*t+lam*lambda[i-1][k-1])/dk;
}
d[k-1] = bb;
#ifdef DEBUG_LLL
cout<<"Leaving swapi with k="<<k<<", kmax="<<kmax<<endl;
show(n,b,lambda,d);
#endif
}
void step3(const int n, int& k, const int kmax,
vector<vec_m>& b, vector<vector<bigint>>& lambda, vector<bigint>& d)
{
redi(n,k,k-1,b,lambda,d);
bigint lhs = 4*(d[k]*d[k-2]+sqr(lambda[k-1][k-2]));
bigint rhs = 3*sqr(d[k-1]);
#ifdef DEBUG_LLL
cout<<"lhs="<<lhs<<", rhs="<<rhs<<endl;
#endif
if( lhs<rhs )
{
swapi(n,k,kmax,b,lambda,d);
k--; if(k<2) k=2;
step3(n,k,kmax,b,lambda,d);
}
else
{
int l;
for(l=k-2; l>0; l--) redi(n,k,l,b,lambda,d);
k++;
}
}
// b is an array of n+1 vectors indexed from 0 to n.
// b[1]...b[n] are the lattice basis, while b[0] holds the coefficients
// of the (diagonal) Gram matrix, so the inner product of b[i] and b[j]
// is sum(k,b[0][k]*b[i][k]*b[j][k]).
//
void lll_reduce(const int n, vector<vec_m>& b)
{
int i, j, k, kmax;
bigint u;
vector<bigint> d(n+1);
vector<vector<bigint>> lambda(n, vector<bigint>(n));
k=2; kmax=1;
d[0]=1; d[1]=sdot(b,1,1);
while(k<=n)
{
vector<bigint>& lambda_k = lambda[k-1];
if(k>kmax)
{
kmax=k;
for(j=1; j<=k; j++)
{
vector<bigint>& lambda_j = lambda[j-1];
u=sdot(b,k,j);
for(i=1; i<j; i++)
{
u=(d[i]*u-lambda_k[i-1]*lambda_j[i-1])/d[i-1];
}
if(j<k) lambda_k[j-1]=u;
else
{
if(u==0)
{
cout<<"lll_reduce(): input vectors dependent!\n";
return;
}
d[k]=u;
}
}
}
#ifdef DEBUG_LLL
cout<<"After step 2 with k="<<k<<", kmax="<<kmax<<endl;
show(n,b,lambda,d);
#endif
step3(n,k,kmax,b,lambda,d);
}
#ifdef TRACE_LLL
cout<<endl;
#endif
}
|