1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
|
// mat.cc: implementation of integer matrix classes
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// Only to be included by matrix.cc
// Definitions of member operators and functions:
void mat::init(long nr, long nc) // resets to zero mat of given size;
{ // with defaults (0,0) releases all space.
nro = nr;
nco = nc;
entries.resize(nro*nco, scalar(0));
}
scalar& mat::operator()(long i, long j) // returns ref to (i,j) entry
{
return entries.at((i-1)*nco+(j-1));
}
scalar mat::operator()(long i, long j) const // returns (i,j) entry
{
return entries.at((i-1)*nco+(j-1));
}
scalar mat::sub(long i, long j) const
{
return entries.at((i-1)*nco+(j-1));
}
mat mat::slice(long r1,long r2,long c1,long c2) const
{
if(c1<0) // abbreviated form with firsts=1
{
c2=r2-1; r2=r1-1; r1=c1=0;
}
else
{
r1--; c1--; r2--; c2--;
}
long n=r2-r1+1,c=c2-c1+1;
mat ans(n,c);
auto ap=ans.entries.begin();
auto mp=entries.begin()+r1*nco+c1;
while(n--)
{
std::copy(mp, mp+c, ap);
ap += c;
mp += nco;
}
return ans;
}
mat& mat::operator=(const mat& m)
{
if (this==&m) return *this;
nro=m.nro;
nco=m.nco;
entries = m.entries;
return *this;
}
void mat::set(long i, long j, const scalar& x)
{
entries.at((i-1)*nco+(j-1)) = x;
}
void mat::add(long i, long j, const scalar& x)
{
if (is_nonzero(x)) entries.at((i-1)*nco+(j-1)) += x;
}
void mat::setrow(long i, const vec& v)
{
std::copy(v.entries.begin(), v.entries.end(), entries.begin() + (i-1)*nco);
}
void mat::setcol(long j, const vec& v)
{
auto colj = entries.begin()+(j-1);
for ( const auto vi : v.entries)
{
*colj = vi;
colj += nco;
}
}
vec mat::row(long i) const
{
vec mi(nco);
auto e = entries.begin()+(i-1)*nco;
std::copy(e, e+nco, mi.entries.begin());
return mi;
}
vec mat::col(long j) const
{
vec v(nro);
auto entriesij = entries.begin()+(j-1);
for ( auto& vi : v.entries)
{
vi = *entriesij;
entriesij+=nco;
}
return v;
}
void mat::swaprows(long r1, long r2)
{
auto mr1 = entries.begin() + (r1-1)*nco;
auto mr2 = entries.begin() + (r2-1)*nco;
std::swap_ranges(mr1, mr1+nco, mr2);
}
void mat::multrow(long r, const scalar& scal)
{
if (is_one(scal)) return;
auto mij = entries.begin()+(r-1)*nco;
std::transform(mij, mij+nco, mij, [scal](const scalar& x) {return x * scal;});
}
void mat::divrow(long r, const scalar& scal)
{
if (is_zero(scal)||is_one(scal)) return;
auto mij = entries.begin()+(r-1)*nco;
std::transform(mij, mij+nco, mij, [scal](const scalar& x) {return x / scal;});
}
scalar mat::content() const
{
return std::accumulate(entries.begin(), entries.end(), scalar(0),
[](const scalar& x, const scalar& y) {return gcd(x,y);});
}
scalar mat::row_content(long r) const
{
auto mij = entries.begin()+(r-1)*nco;
return std::accumulate(mij, mij+nco, scalar(0),
[](const scalar& x, const scalar& y) {return gcd(x,y);});
}
void mat::clearrow(long r)
{
divrow(r, row_content(r));
}
void mat::makeprimitive()
{
scalar g = content();
if (is_zero(g)||is_one(g)) return;
std::transform(entries.begin(), entries.end(), entries.begin(),
[g](const scalar& x) {return x / g;});
}
void mat::operator+=(const mat& n)
{
std::transform(n.entries.begin(), n.entries.end(), entries.begin(), entries.begin(),
[](const scalar& x, const scalar& y) { return x + y;});
}
void mat::operator-=(const mat& n)
{
std::transform(n.entries.begin(), n.entries.end(), entries.begin(), entries.begin(),
[](const scalar& x, const scalar& y) { return y - x;});
}
void mat::operator*=(const scalar& scal)
{
if (is_one(scal))
return;
if (is_zero(scal))
std::fill(entries.begin(), entries.end(), scalar(0));
else
std::transform(entries.begin(), entries.end(), entries.begin(),
[scal](const scalar& x) {return x * scal;});
}
void mat::operator/=(const scalar& scal)
{
if (is_zero(scal)||is_one(scal)) return;
std::transform(entries.begin(), entries.end(), entries.begin(),
[scal](const scalar& x) {return x / scal;});
}
// Definitions of non-member, friend operators and functions
// add/sub row i of mat to v
void add_row_to_vec(vec& v, const mat& m, long i)
{
std::transform(v.entries.begin(), v.entries.end(),
m.entries.begin()+(i-1)*m.nco,
v.entries.begin(), std::plus<scalar>());
}
void sub_row_to_vec(vec& v, const mat& m, long i)
{
std::transform(v.entries.begin(), v.entries.end(),
m.entries.begin()+(i-1)*m.nco,
v.entries.begin(), std::minus<scalar>());
}
mat operator*(const mat& m1, const mat& m2)
{
long m=m1.nro, n=m1.nco, p=m2.nco;
mat m3(m,p);
if (n==m2.nro)
{
auto a=m1.entries.begin(); // a points to m1(i,k)
for (auto c=m3.entries.begin(); c!=m3.entries.end(); c+=p) // c points to m3(i,_) for 0<=i<m
{
for (auto b=m2.entries.begin(); b!=m2.entries.end(); b+=p) // b points to m2(k,_) for 0<=k<n
{ // add m1(i,k)*m2(k,j) to m3(i,j) for 0<=j<p
scalar m1ik = *a++;
std::transform(b, b+p, c, c,
[m1ik] (const scalar& m2kj, const scalar& m3ij) {return m1ik*m2kj+m3ij;});
}
}
}
else
{
cerr << "Incompatible sizes in mat product"<<endl;
}
return m3;
}
int operator==(const mat& m1, const mat& m2)
{
return (m1.nro==m2.nro) && (m1.nco==m2.nco) && (m1.entries==m2.entries);
}
void mat::output(ostream& s) const
{
auto mij=entries.begin();
s << "\n[";
long nr=nro;
while(nr--)
{
long nc=nco;
s<<"[";
while(nc--) {s<<(*mij++); if(nc) s<<",";}
s<<"]"; if(nr) s<<",\n";
}
s << "]\n";
}
void mat::output_pari(ostream& s) const
{
auto mij=entries.begin();
s << "\n[";
long nr=nro;
while(nr--)
{
long nc=nco;
while(nc--) {s<<(*mij++); if(nc) s<<",";}
if(nr) s<<";";
}
s << "]\n";
}
long ndigits(const scalar& a)
{
int digits = 0;
scalar aa(a);
if (aa < 0) digits = 1; // for the '-'
while (is_nonzero(aa)) { aa /= 10; digits++; }
return digits;
}
void mat::output_pretty(ostream& s) const
{
// find max ndgits in each column:
vector<int> colwidths(nco);
for(long j=0; j<nco; j++)
{
auto mij = entries.begin()+j;
scalar ma(0), mi(0); // max and min for column j
for(long i=0; i<nro; i++, mij+=nco)
{
if (*mij>ma) ma=*mij;
else if (*mij<mi) mi=*mij;
}
long nma=ndigits(ma),
nmi=ndigits(mi);
if(nmi>nma)nma=nmi;
colwidths[j]=nma;
}
long nr=nro;
auto mij=entries.begin();
while(nr--)
{
s << "[";
for(long j=0; j<nco; j++)
{
if(j) s<<" ";
s.width(colwidths[j]);
s<<(*mij++);
}
s<<"]\n";
}
}
void mat::dump_to_file(string filename) const
{
ofstream fout(filename.c_str(),ofstream::binary);
fout.write((char*)&nro,sizeof(nro));
fout.write((char*)&nco,sizeof(nco));
fout.write((char*)entries.data(),nro*nco*sizeof(scalar));
fout.close();
}
void mat::read_from_file(string filename)
{
ifstream fin(filename.c_str());
fin.read((char*)&nro,sizeof(nro));
fin.read((char*)&nco,sizeof(nco));
entries.resize(nro*nco);
fin.read((char*)entries.data(),nro*nco*sizeof(scalar));
fin.close();
}
istream& operator>>(istream& s, mat& m) // m cannot be const
{
long n=m.nro*m.nco;
auto mij=m.entries.begin();
while(n--) s >> (*mij++);
return s;
}
mat colcat(const mat& a, const mat& b)
{
long nr = a.nro, nca = a.nco, ncb = b.nco;
mat c(nr,nca+ncb);
if (nr==b.nro)
{
auto aij = a.entries.begin();
auto bij = b.entries.begin();
auto cij = c.entries.begin();
while (cij!=c.entries.end())
{
std::copy(aij, aij+nca, cij);
aij+=nca;
cij+=nca;
std::copy(bij, bij+ncb, cij);
bij+=ncb;
cij+=ncb;
}
}
else
cerr << "colcat: matrices have different number of rows!" << endl;
return c;
}
mat rowcat(const mat& a, const mat& b)
{
mat c(a.nro+b.nro,a.nco);
if (a.nco==b.nco)
{
auto cij = c.entries.begin();
std::copy(a.entries.begin(), a.entries.end(), cij);
cij += a.entries.size();
std::copy(b.entries.begin(), b.entries.end(), cij);
}
else
cerr << "rowcat: matrices have different number of columns!" << endl;
return c;
}
mat directsum(const mat& a, const mat& b)
{
return rowcat(colcat(a,mat(a.nro,b.nco)),colcat(mat(b.nro,a.nco),b));
}
//plain elimination, no clearing
void elimrows(mat& m, long r1, long r2, long pos) // m cannot be const
{
long nc=m.nco;
scalar p = m(r1,pos), q=m(r2,pos);
auto mr1 = m.entries.begin() + (r1-1)*nc;
auto mr2 = m.entries.begin() + (r2-1)*nc;
// replace row2 by p*row2-q*row1
std::transform(mr1, mr1+nc, mr2, mr2,
[p,q] (const scalar& x, const scalar& y) {return p*y-q*x;});
}
//elimination + clearing (i.e. divide new row by its content)
void elimrows1(mat& m, long r1, long r2, long pos)
{
elimrows(m,r1,r2,pos);
m.clearrow(r2);
}
//elimination + divide by last pivot
void elimrows2(mat& m, long r1, long r2, long pos, const scalar& last)
{
elimrows(m,r1,r2,pos);
m.divrow(r2,last);
}
// Definition of non-friend functions
mat operator+(const mat& m)
{
return m;
}
mat operator-(const mat& m)
{
return scalar(-1)*m;
}
mat operator+(const mat& m1, const mat& m2)
{
mat ans(m1); ans+=m2; return ans;
}
mat operator-(const mat& m1, const mat& m2)
{
mat ans(m1); ans-=m2; return ans;
}
mat operator*(const scalar& scal, const mat& m)
{
mat ans(m); ans*=scal; return ans;
}
mat operator/(const mat& m, const scalar& scal)
{
mat ans(m); ans/=scal; return ans;
}
int operator!=(const mat& m1, const mat& m2)
{
return !(m1==m2);
}
vec operator*(const mat& m, const vec& v)
{
long c=m.nco;
vec w(m.nro);
if (c==dim(v))
{
auto mi = m.entries.begin();
for (auto& wi : w.entries)
{
wi = std::inner_product(mi, mi+c, v.entries.begin(), scalar(0));
mi += c;
}
}
else
cerr << "Incompatible sizes in *(mat,vec)"<<endl;
return w;
}
mat mat::scalar_matrix(long n, const scalar& a)
{
mat D(n,n);
for (long i=1; i<=n; i++) D.set(i,i,a);
return D;
}
mat transpose(const mat& m)
{
long nr=m.ncols(), nc=m.nrows();
mat ans(nr, nc);
for (long i=1; i<=nr; i++)
for (long j=1; j<=nc; j++)
ans.set(i,j, m(j,i));
return ans;
}
// submatrix of rows indexed by v, all columns
mat rowsubmat(const mat& m, const vec_i& v)
{
long nr = dim(v), nc = m.ncols();
mat ans(nr,nc);
for (long i=1; i<=nr; i++)
for (long j=1; j<=nc; j++)
ans.set(i,j, m(v[i],j));
return ans;
}
mat rowsubmat(const mat& m, const vec_l& v)
{
long nr = dim(v), nc = m.ncols();
mat ans(nr,nc);
for (long i=1; i<=nr; i++)
for (long j=1; j<=nc; j++)
ans.set(i,j, m(v[i],j));
return ans;
}
// submatrix of rows indexed by iv, columns indexed by jv
mat submat(const mat& m, const vec_i& iv, const vec_i& jv)
{
long nr = dim(iv), nc = dim(jv);
mat ans(nr,nc);
for (long i=1; i<=nr; i++)
for (long j=1; j<=nc; j++)
ans.set(i,j, m(iv[i],jv[j]));
return ans;
}
mat submat(const mat& m, const vec_l& iv, const vec_l& jv)
{
long nr = dim(iv), nc = dim(jv);
mat ans(nr,nc);
for (long i=1; i<=nr; i++)
for (long j=1; j<=nc; j++)
ans.set(i,j, m(iv[i],jv[j]));
return ans;
}
mat echelon(const mat& entries, vec_i& pcols, vec_i& npcols,
long& rk, long& ny, scalar& d, int method)
{
switch (method)
{
case 0: default: return echelon0(entries,pcols,npcols,rk,ny,d);
case 2: return echelonp(entries,pcols,npcols,rk,ny,d, scalar(DEFAULT_MODULUS));
}
}
//#define DEBUG_ECH_0
//N.B. if(q==0) the following multiplies row r2 by p, which looks
//redundant. However, it is important to keep this in as in echelon0
//we must guarentee divisibility by "lastpivot". We do not want to keep
//computing contents of rows as this is slower.
// Used in forward elimination in echelon0
void conservative_elim(vector<scalar>& m, long nc, long r1, long r2, long pos)
{
auto mr1=m.begin() + r1*nc + pos;
auto mr2=m.begin() + r2*nc + pos;
scalar p = *mr1, q = *mr2;
nc -= pos;
#ifdef DEBUG_ECH_0
cout<<"In conservative_elim with p = "<<p<<" and q = " << q << endl;
cout<<"row 1: "; for(long n=0; n<nc; n++) cout<<*(mr1+n)<<","; cout<<endl;
cout<<"row 2: "; for(long n=0; n<nc; n++) cout<<*(mr2+n)<<","; cout<<endl;
#endif
if (is_one(p)&&is_zero(q))
return;
// generic function to make y (entry in row2) 0
std::function<scalar (const scalar&, const scalar&)>
f = [p,q](const scalar& x, const scalar& y) {return p*y - q*x;};
if(is_one(p)) // now q!=0
{
if(is_one(q))
f = [p,q](const scalar& x, const scalar& y) {return y - x;};
else
{
if(is_one(-q))
f = [p,q](const scalar& x, const scalar& y) {return y + x;};
else
f = [p,q](const scalar& x, const scalar& y) {return y - q*x;};
}
}
else // p!=1
{
if(is_zero(q))
f = [p,q](const scalar& x, const scalar& y) {return p*y;};
if(is_one(q))
f = [p,q](const scalar& x, const scalar& y) {return p*y - x;};
if(is_one(-q))
f = [p,q](const scalar& x, const scalar& y) {return p*y + x;};
}
std::transform(mr1, mr1+nc, mr2, mr2, f);
}
// This version does not multiply row r1 by p unnecessarily. Used in
// back substitution, it does not assume that the entries in
// columns<pos are 0.
void elim(vector<scalar>& m, long nc, long r1, long r2, long pos)
{
auto mr1=m.begin()+r1*nc;
auto mr2=m.begin()+r2*nc;
scalar p = *(mr1+pos), q = *(mr2+pos);
#ifdef DEBUG_ECH_0
cout<<"In elim with p = "<<p<<" and q = " << q << endl;
cout<<"row 1: "; for(long n=0; n<nc; n++) cout<<*(mr1+n)<<","; cout<<endl;
cout<<"row 2: "; for(long n=0; n<nc; n++) cout<<*(mr2+n)<<","; cout<<endl;
#endif
if (is_one(p)&&is_zero(q))
return;
// generic function to make y (entry in row2) 0
std::function<scalar (const scalar&, const scalar&)>
f = [p,q](const scalar& x, const scalar& y) {return p*y - q*x;};
if(is_one(p)) // now q!=0
{
if(is_one(q))
f = [p,q](const scalar& x, const scalar& y) {return y - x;};
else
{
if(is_one(-q))
f = [p,q](const scalar& x, const scalar& y) {return y + x;};
else
f = [p,q](const scalar& x, const scalar& y) {return y - q*x;};
}
}
else // p!=1
{
if(is_one(q))
f = [p,q](const scalar& x, const scalar& y) {return p*y - x;};
if(is_one(-q))
f = [p,q](const scalar& x, const scalar& y) {return p*y + x;};
}
std::transform(mr1, mr1+nc, mr2, mr2, f);
}
void clear(vector<scalar>& row, long col1, long col2)
{
auto row1=row.begin()+col1;
auto row2=row.begin()+col2;
scalar g = std::accumulate(row1, row2, scalar(0),
[](const scalar& x, const scalar& y) {return gcd(x,y);});
if (g>1)
std::for_each(row1, row2, [g](scalar& x) {x/=g;});
}
//#ifndef DEBUG_ECH_0
//#define DEBUG_ECH_0
//#endif
#ifdef DEBUG_ECH_0
void show(vector<scalar> m, long nr, long nc)
{
auto mij = m.begin();
for(long i=0; i<nr; i++)
{
for(long j=0; j<nc; j++)
cout<<(*mij++)<<"\t";
cout<<"\n";
}
}
#endif
mat echelon0(const mat& entries, vec_i& pc, vec_i& npc,
long& rk, long& ny, scalar& d)
{
#ifdef DEBUG_ECH_0
cout<<"In echelon0 with matrix:\n"<<entries<<endl;
#endif
rk=0; ny=0;
scalar lastpivot(1);
long r=0, nc=entries.nco, nr=entries.nro;
vector<scalar> m = entries.entries;
vector<int> pcols(nc), npcols(nc);
for (long c=0; (c<nc)&&(r<nr); c++)
{
auto mij=m.begin()+r*nc+c; // points to column c in row r
scalar piv = abs(*mij);
long rmin = r;
mij+=nc;
for (long r2=r+1; (r2<nr)&&(piv!=1); r2++, mij+=nc)
{
scalar mr2c = abs(*mij);
if ((0<mr2c) && ((mr2c<piv) || (piv==0)))
{
piv=mr2c;
rmin=r2;
}
}
if (piv==0)
npcols[ny++] = c;
else
{
pcols[rk++] = c;
#ifdef DEBUG_ECH_0
cout<<"Using col "<<c<<" as pivotal col; pivot="<<piv<<" in row "<<rmin<<endl;
#endif
if (rmin>r) //swap rows
{
#ifdef DEBUG_ECH_0
cout<<"Swapping rows "<<r<<" and "<<rmin<<endl;
#endif
auto mr1 = m.begin() + r*nc;
auto mr2 = m.begin() + rmin*nc;
std::swap_ranges(mr1, mr1+nc, mr2);
}
for (long r3 = r+1 ; r3<nr; r3++)
{
#ifdef DEBUG_ECH_0
cout<<"Eliminating from row "<<r3<<endl;
cout<<"Before, m is\n"; show(m,nr,nc);
#endif
conservative_elim(m,nc,r,r3,c);
#ifdef DEBUG_ECH_0
cout<<"After, m is\n"; show(m,nr,nc);
#endif
if(lastpivot>1)
{
auto mi1 = m.begin()+r3*nc;
std::transform(mi1, mi1+nc, mi1, [lastpivot]( const scalar& x) {return x/lastpivot;});
}
}
lastpivot=piv;
#ifdef DEBUG_ECH_0
cout<<"r="<<r<<": pivot = "<<piv<<endl;
#endif
r++;
}
#ifdef DEBUG_ECH_0
cout<<"Current mat is:\n";show(m,nr,nc);
#endif
}
for (long c = rk+ny; c<nc; c++) npcols[ny++] = c;
#ifdef DEBUG_ECH_0
cout<<"After forward elimination, rank = "<<rk<<"; pivots are:"<<endl;
for(long r3=0; r3<rk; r3++) cout<<*(m.begin()+r3*nc+pcols[r3])<<",";
cout<<endl;
#endif
d=1;
if (ny>0) // Back-substitute and even up pivots
{
for (long r1=0; r1<rk; r1++)
clear(m, r1*nc, (r1+1)*nc); // divides row by its content
#ifdef DEBUG_ECH_0
cout<<"After clearing, pivots are:"<<endl;
for(long r3=0; r3<rk; r3++)
cout<<*(m.begin()+r3*nc+pcols[r3])<<",";
cout<<endl;
#endif
for (long r1=0; r1<rk; r1++)
{
auto mi1 = m.begin()+r1*nc;
#ifdef DEBUG_ECH_0
cout<<"Before back-subst, row "<<r<<" is:"<<endl;
for(long r3=0; r3<nc; r3++)
cout<<*(mi1+r3)<<",";
cout<<": pivot = "<<*(mi1+pcols[r1])<<endl;
#endif
for (long r2=r1+1; r2<rk; r2++)
elim(m,nc,r2,r1,pcols[r2]);
#ifdef DEBUG_ECH_0
cout<<"After back-subst, row "<<r<<" is:"<<endl;
for(long r3=0; r3<nc; r3++)
cout<<*(mi1+r3)<<",";
cout<<": pivot = "<<*(mi1+pcols[r1])<<endl;
#endif
clear(m, r1*nc, (r1+1)*nc);
#ifdef DEBUG_ECH_0
cout<<"After clearing, row "<<r1<<" is:"<<endl;
for(long r3=0; r3<nc; r3++)
cout<<*(mi1+r3)<<",";
cout<<": pivot = "<<*(mi1+pcols[r1])<<endl;
#endif
d = lcm(d, *(mi1+pcols[r1]));
}
d = abs(d);
// cout << "d = " << d << "\n";
auto mij = m.begin();
for (long r1=0; r1<rk; r1++)
{
scalar fac = d/mij[pcols[r1]];
std::transform(mij, mij+nc, mij, [fac](const scalar& x){return fac*x;});
mij += nc;
}
}
else
{
auto mij = m.begin();
for (long i=0; i<rk; i++)
for (long j=0; j<nc; j++)
*mij++ = (j==pcols[i]); // 0 or 1 !
}
// fix vectors
pc.init(rk); npc.init(ny);
for (long i=0; i<rk; i++) pc[i+1]= pcols[i]+1;
for (long i=0; i<ny; i++) npc[i+1]=npcols[i]+1;
// Copy back into mat
mat ans(rk,nc, m);
return ans;
}
long mat::rank() const
{
long rk=0;
scalar lastpivot(1);
mat m(*this); // work with a copy, which will be reduced
long nc=m.ncols(), nr=m.nrows();
for (long c=1, r=1; (c<=nc)&&(r<=nr); c++)
{
scalar mmin = abs(m(r,c));
long rmin = r;
for (long r2=r+1; (r2<=nr)&&(!is_one(mmin)); r2++)
{
scalar mr2c = abs(m(r2,c));
if ((is_nonzero(mr2c)) && ((mr2c<mmin) || (is_zero(mmin))))
{
mmin=mr2c;
rmin=r2;
}
}
if (mmin!=0)
{
rk++;
if (rmin>r) m.swaprows(r,rmin);
for (long r3 = r+1 ; r3<=nr; r3++)
elimrows2(m,r,r3,c,lastpivot);
lastpivot=mmin;
r++;
}
}
return rk;
}
long mat::nullity() const
{
return nco-rank();
}
scalar mat::trace() const
{
scalar tr(0);
for (long i=0; i<nro; i++)
tr += entries.at(i*(nco+1));
return tr;
}
// FADEEV'S METHOD
vector<scalar> mat::charpoly() const
{ long n = nrows();
mat b(*this);
mat id(identity_matrix(n));
vector<scalar> clist(n+1);
scalar t = trace();
clist[n] = 1;
clist[n-1] = -t;
for (long i=2; i<=n; i++)
{ b=(*this)*(b-t*id); // cout << b; // (for testing only)
t=b.trace()/i;
clist[n-i] = -t;
}
if (!(b==t*id))
{
cerr << "Error in charpoly: final b = " << (b-t*id) << endl;
}
return clist;
}
scalar mat::determinant() const
{
scalar det = charpoly()[0];
return (nro%2? -det :det);
}
void vec::sub_row(const mat& m, int i)
{
long n=entries.size();
auto wi = m.entries.begin() + (i-1)*n;
std::transform(entries.begin(), entries.end(), wi, entries.begin(), std::minus<scalar>());
}
void vec::add_row(const mat& m, int i)
{
long n=entries.size();
auto wi = m.entries.begin() + (i-1)*n;
std::transform(entries.begin(), entries.end(), wi, entries.begin(), std::plus<scalar>());
}
mat addscalar(const mat& mm, const scalar& c)
{
return mm + mat::scalar_matrix(mm.nrows(), c);
}
vec apply(const mat& m, const vec& v) // same as *(mat, vec)
{
return m*v;
}
void mat::reduce_mod_p(const scalar& p)
{
if (p==0) return;
std::transform(entries.begin(), entries.end(), entries.begin(),
[p](const scalar& mij) {return mod(mij,p);});
}
void elimp(mat& m, long r1, long r2, long pos, const scalar& pr)
{
long nc=m.nco;
auto mr1 = m.entries.begin() + (r1-1)*nc + (pos-1);
auto mr2 = m.entries.begin() + (r2-1)*nc + (pos-1);
scalar p = mod(*mr1,pr), q=mod(*mr2,pr);
if(q==0) {return;} // nothing to do
nc -= (pos-1); // first pos-1 entries are assumed 0 already
// generic function to make y (entry in row2) 0
std::function<scalar (const scalar&, const scalar&)>
f = [pr,p,q](const scalar& x, const scalar& y) {return mod(xmodmul(p,y,pr)-xmodmul(q,x,pr), pr);};
// simpler special cases (for same signature they must also capture both p and q)
if(is_one(p))
{
if(is_one(q))
f = [pr,p,q](const scalar& x, const scalar& y) {return mod(y-x, pr);};
else
{
if(is_one(-q))
f = [pr,p,q](const scalar& x, const scalar& y) {return mod(y+x, pr);};
else
// general q
f = [pr,p,q](const scalar& x, const scalar& y) {return mod(y-xmodmul(q,x,pr), pr);};
}
}
else // general p!=1
{
if(is_one(q))
f = [pr,p,q](const scalar& x, const scalar& y) {return mod(xmodmul(p,y,pr)-x, pr);};
if(is_one(-q))
f = [pr,p,q](const scalar& x, const scalar& y) {return mod(xmodmul(p,y,pr)+x, pr);};
// else the generic f will be used
}
std::transform(mr1, mr1+nc, mr2, mr2, f);
}
void elimp1(mat& m, long r1, long r2, long pos, const scalar& pr)
//same as elimp except assumes pivot is 1
{
long nc=m.nco;
auto mr1 = m.entries.begin() + (r1-1)*nc + (pos-1);
auto mr2 = m.entries.begin() + (r2-1)*nc + (pos-1);
scalar q=mod(*mr2,pr);
if(is_zero(q)) return;
nc -= (pos-1); // first pos-1 entries are assumed 0 already
// generic function to make y (entry in row2) 0
std::function<scalar (const scalar&, const scalar&)>
f = [pr,q](const scalar& x, const scalar& y) {return mod(y-xmodmul(q,x,pr), pr);};
// simpler special cases
if (is_one(q))
f = [pr,q](const scalar& x, const scalar& y) {return mod(y-x, pr);};
if (is_one(-q))
f = [pr,q](const scalar& x, const scalar& y) {return mod(y+x, pr);};
std::transform(mr1, mr1+nc, mr2, mr2, f);
}
//#define TRACE 1
// This method uses mod-p arithmetic internally but returns the
// "characteristic zero" echelon form of the mat. It will only give
// the wrong answer if (a) the rank mod pr is not the actual rank, or (b)
// the actual echelon form has entries which are too big.
mat echelonp(const mat& entries, vec_i& pcols, vec_i& npcols,
long& rk, long& ny, scalar& d, const scalar& pr)
{
#ifdef TRACE
cout << "In echelonp\n";
#endif /* TRACE */
long nr=entries.nrows(), nc=entries.ncols();
mat m(nr,nc);
std::transform(entries.entries.begin(), entries.entries.end(), m.entries.begin(),
[pr] (const scalar& x) {return mod(x,pr);});
pcols.init(nc);
npcols.init(nc);
rk=0; ny=0;
long r=1;
for (long c=1; (c<=nc)&&(r<=nr); c++)
{
scalar mmin = m(r,c);
long rmin = r;
for (long r2=r+1; (r2<=nr)&&(mmin==0); r2++)
{
scalar mr2c = m(r2,c);
if (0!=mr2c)
{
mmin=mr2c;
rmin=r2;
}
}
if (mmin==0)
npcols[++ny] = c;
else
{
pcols[++rk] = c;
if (rmin>r) m.swaprows(r,rmin);
for (long r3 = r+1 ; r3<=nr; r3++)
elimp(m,r,r3,c,pr);
r++;
}
}
for (long c = rk+ny+1; c<=nc; c++)
npcols[++ny] = c ;
#ifdef TRACE
cout << "Finished first stage; rk = " << rk;
cout << ", ny = " << ny << "\n";
cout << "Back substitution.\n";
#endif /* TRACE */
pcols = pcols.slice(1,rk);
npcols = npcols.slice(1,ny); // truncate index vectors
if (ny>0)
{
for (long r1=1; r1<=rk; r1++)
for (long r2=r+1; r2<=rk; r2++)
elimp(m,r2,r1,pcols[r2],pr);
for (long r1=1; r1<=rk; r1++)
{
scalar fac = xmod(invmod(m(r1,pcols[r1]),pr),pr);
for (long c=1; c<=nc; c++)
m(r1,c)=xmodmul(fac,m(r1,c),pr);
}
}
else
for (long i=1; i<=rk; i++)
for (long j=1; j<=nc; j++)
m(i,j)=(j==pcols[i]); // 0 or 1 !
#ifdef TRACE
cout << "Finished second stage.\n Echelon mat mod "<<pr<<" is:\n";
cout << m;
cout << "Now lifting back to Q.\n";
#endif /* TRACE */
scalar dd(1);
mat nmat(rk,nc);
mat dmat(rk,nc);
#ifdef TRACE
cout << "rk = " << rk << "\n";
cout << "ny = " << ny << "\n";
#endif /* TRACE */
for (long i=1; i<=rk; i++)
{
for (long j=1; j<=rk; j++)
{
nmat(i,pcols[j])=(i==j);
dmat(i,pcols[j])=1;
}
for (long j=1; j<=ny; j++)
{
scalar n1,d1;
long jj = npcols[j];
int ok = modrat(m(i,jj), pr,n1,d1);
nmat(i,jj)=n1;
dmat(i,jj)=d1;
if (ok)
dd=(dd*d1)/gcd(dd,d1);
else
cerr<<"Failed to lift "<<m(i,jj)<<" mod "<<pr<<" to Q"<<endl;
}
}
dd=abs(dd);
#ifdef TRACE
cout << "Numerator mat = " << nmat;
cout << "Denominator mat = " << dmat;
cout << "Common denominator = " << dd << "\n";
#endif /* TRACE */
for (long i=1; i<=rk; i++)
for (long j=1; j<=nc; j++)
m(i,j)=(dd*nmat(i,j))/dmat(i,j);
d=dd;
return m;
}
// The following function computes the echelon form of m modulo the prime pr.
mat echmodp(const mat& entries, vec_i& pcols, vec_i& npcols, long& rk, long& ny, const scalar& pr)
{
// cout << "In echmodp with p="<<pr<<" and matrix " << entries << endl;
long nr=entries.nrows(), nc=entries.ncols();
mat m(nr,nc);
std::transform(entries.entries.begin(), entries.entries.end(), m.entries.begin(),
[pr] (const scalar& x) {return mod(x,pr);});
// cout << " - after reducing modulo p, matrix is " << m << endl;
pcols.init(nc);
npcols.init(nc);
rk=ny=0;
long r=1;
for (long c=1; (c<=nc)&&(r<=nr); c++)
{
auto mij=m.entries.begin()+(r-1)*nc+c-1;
scalar mmin(*mij);
long rmin = r;
mij += nc;
for (long r2=r+1; (r2<=nr)&&(is_zero(mmin)); r2++, mij+=nc)
{
scalar mr2c(*mij);
if (is_nonzero(mr2c))
{
mmin=mr2c;
rmin=r2;
}
}
if (is_zero(mmin))
npcols[++ny] = c;
else
{
pcols[++rk] = c;
if (rmin>r)
m.swaprows(r,rmin);
auto entriesij = m.entries.begin()+(r-1)*nc;
// cout<<"c = "<<c<<", pivot = "<<mmin<<endl;
scalar fac = xmod(invmod(mmin,pr),pr);
std::transform(entriesij, entriesij+nc, entriesij,
[pr,fac] (const scalar& x) {return mod(xmodmul(fac,x, pr), pr);});
for (long r3 = r+1 ; r3<=nr; r3++)
elimp1(m,r,r3,c,pr);
r++;
}
// cout << "After c="<<c<<" elimination, matrix is "<<m<<endl;
}
for (long c = rk+ny+1; c<=nc; c++)
npcols[++ny] = c ;
pcols = pcols.slice(rk);
npcols = npcols.slice(ny); // truncate index vectors
// cout << "After forward elimination, matrix is "<<m<<endl;
// cout << "Rank = " << rk << ". Nullity = " << ny << ".\n";
if (ny>0)
{
for (long r1=1; r1<=rk; r1++)
for (long r2=r1+1; r2<=rk; r2++)
elimp(m,r2,r1,pcols[r2],pr);
for (long r1=1; r1<=rk; r1++)
{
auto mij = m.entries.begin()+(r1-1)*nc;
scalar fac = *(mij+pcols[r1]-1);
fac = mod(invmod(fac,pr),pr);
std::transform(mij, mij+nc, mij,
[pr,fac] (const scalar& x) {return mod(xmodmul(fac,x, pr), pr);});
}
}
else
{
auto mij=m.entries.begin();
for (long i=1; i<=rk; i++)
for (long j=1; j<=nc; j++)
*mij++ = scalar(j==pcols[i]); // 0 or 1 !
}
return m.slice(rk,nc);
}
mat echmodp_uptri(const mat& entries, vec_i& pcols, vec_i& npcols,
long& rk, long& ny, const scalar& pr)
{
// cout << "In echmodp_uptri with matrix = " << entries;
long nr=entries.nrows(), nc=entries.ncols();
mat m(nr,nc);
std::transform(entries.entries.begin(), entries.entries.end(), m.entries.begin(),
[pr] (const scalar& x) {return mod(x,pr);});
pcols.init(nc);
npcols.init(nc);
rk=ny=0;
long r=1;
for (long c=1; (c<=nc)&&(r<=nr); c++)
{
auto mij=m.entries.begin()+(r-1)*nc+c-1;
scalar mmin = *mij;
long rmin = r;
mij += nc;
for (long r2=r+1; (r2<=nr)&&(mmin==0); r2++, mij+=nc)
{
scalar mr2c = *mij;
if (0!=mr2c)
{
mmin=mr2c;
rmin=r2;
}
}
if (mmin==0)
npcols[++ny] = c;
else
{
pcols[++rk] = c;
if (rmin>r)
m.swaprows(r,rmin);
auto entriesij = m.entries.begin()+(r-1)*nc;
scalar fac = mod(invmod(mmin,pr),pr);
std::transform(entriesij, entriesij+nc, entriesij,
[pr,fac] (const scalar& x) {return mod(fac*x, pr);});
for (long r3 = r+1 ; r3<=nr; r3++)
elimp1(m,r,r3,c,pr);
r++;
}
}
for (long c = rk+ny+1; c<=nc; c++)
npcols[++ny] = c ;
pcols = pcols.slice(rk);
npcols = npcols.slice(ny); // truncate index vectors
// cout << "Rank = " << rk << ". Nullity = " << ny << ".\n";
return m.slice(rk,nc);
}
//////////////////////////////////////////////////////////////////////////////////////////////
//
// Interface with NTL matrices
//
//////////////////////////////////////////////////////////////////////////////////////////////
//#define TRACE_NTL_REF
#include <NTL/mat_lzz_p.h>
#ifdef TRACE_NTL_REF
#include <eclib/timer.h>
#endif
// Construct an NTL mat_lzz_p (matrix mod p) from a mat mod pr
mat_zz_p mat_zz_p_from_mat(const mat& M, const scalar& pr)
{
long nr=M.nrows(), nc=M.ncols();
#ifdef TRACE_NTL_REF
cout<<"Creating an NTL mat_zz_p from a matrix with " << nr <<" rows and "<<nc<<" columns, mod "<<pr<<endl;
#endif
// create NTL matrix copy of M:
zz_pPush push(I2long(pr));
mat_zz_p A(INIT_SIZE, nr, nc);
for(long i=0; i<nr; i++)
for(long j=0; j<nc; j++)
A.put(i,j, conv<zz_p>(M(i+1,j+1)));
#ifdef TRACE_NTL_REF
cout<<"--done."<<endl;
#endif
return A;
}
// Construct a mat (scalar type same as pr) from an NTL mat_lzz_p
mat mat_from_mat_zz_p(const mat_zz_p& A, const scalar& pr) // type of scalar fixes return type
{
long nr = A.NumRows(), nc = A.NumCols();
#ifdef TRACE_NTL_REF
cout<<"Creating a mat from an NTL mat_zz_p with " << nr <<" rows and "<<nc<<" columns, mod "<<pr<<endl;
#endif
// create matrix copy of A:
mat M(nr, nc);
for(long i=0; i<nr; i++)
for(long j=0; j<nc; j++)
M(i+1,j+1) = mod(conv<scalar>(A.get(i,j)), pr);
#ifdef TRACE_NTL_REF
cout<<"--done."<<endl;
#endif
return M;
}
// compute ref of M mod pr via NTL, setting rk=rank, ny=nullity,
// pivotal columns pcols, non-pivotal columns npcols
mat ref_via_ntl(const mat& M, vec_i& pcols, vec_i& npcols,
long& rk, long& ny, const scalar& pr)
{
long nc=M.ncols();
long i, j, k;
#ifdef TRACE_NTL_REF
timer ntl_timer;
ntl_timer.start();
#endif
zz_pPush push(I2long(pr));
mat_zz_p A = mat_zz_p_from_mat(M, pr);
#ifdef TRACE_NTL_REF
cout<<"--calling NTL's gauss()..."<<flush;
#endif
rk = gauss(A); // reduce to echelon form in place; rk is the rank
#ifdef TRACE_NTL_REF
cout<<"done." << endl;
#endif
ny = nc-rk;
#ifdef TRACE_NTL_REF
cout<<"Rank = " << rk <<", nullity = "<<ny<<endl;
#endif
// Find pivots, rescale rows so pivots are 1
pcols.init(rk);
npcols.init(ny);
zz_p zero = conv<zz_p>(0);
zz_p one = conv<zz_p>(1);
zz_p piv, inv_piv;
for (i = j = k = 0; i < rk; i++)
{
while (A.get(i,j) == zero)
{
npcols[k+1] = j+1;
k++;
j++;
}
piv = A.get(i,j);
pcols[i+1] = j+1;
j++;
if (piv != one)
{
inv(inv_piv, piv);
A[i] = inv_piv*A[i];
}
}
while (k < ny)
{
npcols[k+1] = j+1;
k++;
j++;
}
// copy back to a new matrix for return:
mat ans = mat_from_mat_zz_p(A, pr).slice(rk,nc);
#ifdef TRACE_NTL_REF
ntl_timer.start();
ntl_timer.show();
cout<<endl;
#endif
return ans;
}
long rank_via_ntl(const mat& M, const scalar& pr)
{
#ifdef TRACE_NTL_REF
cout << "Computing rank mod "<<pr<<" of a matrix of size ("<<M.nrows()<<", "<<M.ncols()<<")..."<<flush;
timer ntl_timer;
ntl_timer.start();
#endif
zz_pPush push(I2long(pr));
mat_zz_p A = mat_zz_p_from_mat(M, pr);
long rk = gauss(A); // reduce to echelon form in place; rk is the rank
#ifdef TRACE_NTL_REF
cout << "done: "<<flush;
ntl_timer.start();
ntl_timer.show();
cout<<endl;
#endif
return rk;
}
scalar det_via_ntl(const mat& M, const scalar& pr)
{
#ifdef TRACE_NTL_REF
cout << "Computing determinant mod "<<pr<<" of a matrix of size ("<<M.nrows()<<", "<<M.ncols()<<")..."<<flush;
timer ntl_timer;
ntl_timer.start();
#endif
zz_pPush push(I2long(pr));
mat_zz_p A = mat_zz_p_from_mat(M, pr);
zz_p det = determinant(A);
#ifdef TRACE_NTL_REF
cout << "done: "<<flush;
ntl_timer.start();
ntl_timer.show();
cout<<endl;
#endif
return mod(conv<scalar>(det), pr);
}
//////////////////////////////////////////////////////////////////////////////////////////////
//
// Interface with FLINT matrices
//
//////////////////////////////////////////////////////////////////////////////////////////////
#if FLINT
#include "eclib/flinterface.h"
// FLINT has more than one type for modular matrices: standard in
// FLINT-2.3..2.9 was nmod_mat_t with entries of type mp_limb_t
// (unsigned long) while non-standard was hmod_mat_t, with entries
// hlimb_t (unsigned int). From FLINT-3 the latter is emulated via a
// wrapper. We use the former when scalar=long and the latter when
// scalar=int and the FLINT versin is at least 3. The unsigned
// scalar types are #define'd as uscalar.
void mod_mat_from_mat(mod_mat& A, const mat& M, const scalar& pr)
{
long nr=M.nrows(), nc=M.ncols();
// copy of the modulus for FLINT
long ipr = I2long(pr);
uscalar p = (uscalar)ipr;
// create flint matrix copy of M:
mod_mat_init(A, nr, nc, p);
for(long i=0; i<nr; i++)
for(long j=0; j<nc; j++)
mod_mat_entry(A,i,j) = (uscalar)posmod(M(i+1,j+1),ipr);
}
mat mat_from_mod_mat(const mod_mat& A, const scalar& a) // scalar just to fix return type
{
long nr=mod_mat_nrows(A), nc=mod_mat_ncols(A);
// create matrix copy of A:
mat M(nr, nc);
for(long i=0; i<nr; i++)
for(long j=0; j<nc; j++)
M(i+1,j+1) = mod_mat_entry(A,i,j);
return M;
}
mat ref_via_flint(const mat& M, const scalar& pr)
{
// create flint matrix copy of M:
mod_mat A;
mod_mat_from_mat(A,M,pr);
// reduce A to rref:
#ifdef TRACE_FLINT_RREF
timeit_t t;
timeit_start(t);
long nc=M.ncols(), nr=mod_mat_nrows(A);
cerr<<"(nr,nc)=("<<nr<<","<<nc<<"): "<<flush;
#endif
mod_mat_rref(A);
#ifdef TRACE_FLINT_RREF
timeit_stop(t);
cerr<<" cpu = "<<(t->cpu)<<" ms, wall = "<<(t->wall)<<" ms"<<endl;
#endif
// copy back to a new matrix for return:
mat ans = mat_from_mod_mat(A, pr);
// clear the flint matrix and return:
mod_mat_clear(A);
return ans;
}
// The following function computes the reduced echelon form
// of M modulo the prime pr, calling FLINT's nmod_mat_rref function.
mat ref_via_flint(const mat& M, vec_i& pcols, vec_i& npcols,
long& rk, long& ny, const scalar& pr)
{
long nc=M.ncols();
long i, j, k;
#ifdef TRACE_FLINT_RREF
#if (SCALAR_OPTION==1)
cout << "In ref_via_flint(M) with M having "<<nr<<" rows and "<<nc<<" columns, using hmod_mat and modulus "<<pr<<"."<<endl;
#else
cout << "In ref_via_flint(M) with M having "<<nr<<" rows and "<<nc<<" columns, using nmod_mat and modulus "<<pr<<"."<<endl;
#endif
// cout << "Size of scalar = "<<8*sizeof(scalar)<<" bits"<<endl;
// cout << "Size of uscalar = "<<8*sizeof(uscalar)<<" bits"<<endl;
#endif
// create flint matrix copy of M:
mod_mat A;
mod_mat_from_mat(A,M,pr);
#ifdef TRACE_FLINT_RREF
timeit_t t;
timeit_start(t);
long nr=M.nrows();
cerr<<"(nr,nc)=("<<nr<<","<<nc<<"): "<<flush;
#endif
// reduce A to rref:
rk = mod_mat_rref(A);
#ifdef TRACE_FLINT_RREF
timeit_stop(t);
cerr<<"rank = "<<rk<<". cpu = "<<(t->cpu)<<" ms, wall = "<<(t->wall)<<" ms"<<endl;
#endif
// construct vectors of pivotal and non-pivotal columns
ny = nc-rk;
pcols.init(rk);
npcols.init(ny);
for (i = j = k = 0; i < rk; i++)
{
while (mod_mat_entry(A, i, j) == 0UL)
{
npcols[k+1] = j+1;
k++;
j++;
}
pcols[i+1] = j+1;
j++;
}
while (k < ny)
{
npcols[k+1] = j+1;
k++;
j++;
}
// copy back to a new matrix for return:
mat ans = mat_from_mod_mat(A,pr).slice(rk,nc);
// clear the flint matrix and return:
mod_mat_clear(A);
return ans;
}
#endif // FLINT
//////////////////////////////////////////////////////////////////////////////////////////////
mat matmulmodp(const mat& m1, const mat& m2, const scalar& pr)
{
long m=m1.nro, n=m1.nco, p=m2.nco;
mat m3(m,p);
if (n==m2.nro)
{
auto a=m1.entries.begin(); // a points to m1(i,k)
for (auto c=m3.entries.begin(); c!=m3.entries.end(); c+=p) // c points to m3(i,_) for 0<=i<m
{
for (auto b=m2.entries.begin(); b!=m2.entries.end(); b+=p) // b points to m2(k,_) for 0<=k<n
{ // add m1(i,k)*m2(k,j) to m3(i,j) for 0<=j<p
scalar m1ik = *a++;
std::transform(b, b+p, c, c,
[pr,m1ik] (const scalar& m2kj, const scalar& m3ij)
{return xmod(xmodmul(m1ik,m2kj,pr)+m3ij, pr);});
}
}
}
else
{
cerr << "Incompatible sizes in mat product"<<endl;
}
return m3;
}
int liftmat(const mat& mm, const scalar& pr, mat& m, scalar& dd)
{
int trace=0;
if(trace)
cout << "Lifting mod-p mat; mat mod "<<pr<<" is:\n"
<< mm
<< "Now lifting back to Q." << endl;
scalar n,d;
scalar lim = sqrt(pr>>1);
m = mm;
m.reduce_mod_p(pr);
if (maxabs(m) < lim) return 1;
int success = 1;
dd=1;
std::for_each(m.entries.begin(), m.entries.end(),
[&success,lim,&dd,pr,&n,&d] (const scalar& x)
{if (abs(x)>lim) {int succ = modrat(x,pr,n,d); if(succ) d=lcm(d,dd); else success=0;}});
dd=abs(dd);
if(trace)
cout << "Common denominator = " << dd << "\n";
std::transform(m.entries.begin(), m.entries.end(), m.entries.begin(),
[pr,dd] (const scalar& x) {return mod(xmodmul(dd,x,pr),pr);});
if (!success)
{
cerr<<"liftmat() failed to lift some entries mod "<<pr<<endl;
return 0;
}
if(trace)
cout << "Lifted matrix is " << m << "\n";
return 1;
}
scalar maxabs(const mat& m) // max entry
{
scalar a(0);
std::for_each(m.entries.begin(), m.entries.end(), [&a](const scalar& x) {return max(a,abs(x));});
return a;
}
long population(const mat& m) // #nonzero entries
{
if (m.entries.empty()) return 0;
return std::count_if(m.entries.begin(), m.entries.end(), [](const scalar& x) {return is_nonzero(x);});
}
double sparsity(const mat& m)
{
if (m.entries.empty()) return 1;
return double(population(m))/m.entries.size();
}
#if (FLINT==1)&&(__FLINT_VERSION>2)&&(SCALAR_OPTION==1)
// Implementation of wrapper functions declared in flinterface.h
// written by Fredrik Johansson
#include <flint/gr.h>
#include <flint/gr_mat.h>
void
hmod_mat_init(hmod_mat_t mat, slong rows, slong cols, hlimb_t n)
{
gr_ctx_t ctx;
gr_ctx_init_nmod32(ctx, n);
gr_mat_init((gr_mat_struct *) mat, rows, cols, ctx);
nmod_init(&(mat->mod), n);
}
void
hmod_mat_clear(hmod_mat_t mat)
{
if (mat->entries)
{
flint_free(mat->entries);
flint_free(mat->rows);
}
}
void
hmod_mat_mul(hmod_mat_t C, const hmod_mat_t A, const hmod_mat_t B)
{
gr_ctx_t ctx;
gr_ctx_init_nmod32(ctx, C->mod.n);
GR_MUST_SUCCEED(gr_mat_mul((gr_mat_struct *) C, (gr_mat_struct *) A, (gr_mat_struct *) B, ctx));
}
slong
hmod_mat_rref(hmod_mat_t mat)
{
slong rank;
gr_ctx_t ctx;
gr_ctx_init_nmod32(ctx, mat->mod.n);
GR_MUST_SUCCEED(gr_mat_rref_lu(&rank, (gr_mat_struct *) mat, (gr_mat_struct *) mat, ctx));
return rank;
}
#endif
|