1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// polys.cc : implements interface to NTL polynomials
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/polys.h>
FqPoly reduce(const ZPoly& f, const galois_field& Fq)
{
NewFqPoly(Fq,fmodq);
SetDegree(fmodq,Degree(f));
for(int i=0; i<=Degree(f); i++)
SetCoeff(fmodq,i,ZtoGF(Fq,PolyCoeff(f,i)));
return fmodq;
}
vector<gf_element> roots(const FqPoly& f)
{
// make f monic:
FqPoly f1=f;
MakeMonic(f1);
// reduce to distinct roots case:
ZZ_pX X; SetX(X);
ZZ_pX g = PowerXMod(ZZ_p::modulus(),f1)-X;
vec_ZZ_p r; FindRoots(r,GCD(f1,g));
vector<gf_element>ans;
for(int i=0; i<r.length(); i++) ans.push_back(r[i]);
return ans;
}
vector<bigint> rootsmod(const vector<bigint>& coeffs, bigint q)
{
galois_field Fq(q);
NewFqPoly(Fq,f);
unsigned long i, deg = coeffs.size()-1;
SetDegree(f,deg);
for (i=0; i<=deg; i++) SetCoeff(f,i,ZtoGF(Fq,coeffs[i]));
vector<gf_element> r = roots(f);
vector<bigint>ans;
for(i=0; i<r.size(); i++) ans.push_back(LiftGF(r[i]));
sort(ans.begin(),ans.end());
return ans;
}
//#define TRACE_ROOTS
vector<bigrational> roots(const ZPoly& f)
{
#ifdef TRACE_ROOTS
cout<<"Finding rational roots of polynomial f = "<<f<<endl;
#endif
vector<bigrational> ans;
int i;
ZPoly g;
bigrational root;
ZZ c;
vec_pair_ZZX_long factors;
factor(c,factors,f);
#ifdef TRACE_ROOTS
cout<<"f has " << factors.length() << " factors" << endl;
#endif
for(i=0; i<factors.length(); i++)
{
g = factors[i].a;
#ifdef TRACE_ROOTS
cout<<"factor "<<g<<" has degree "<<deg(g)<<endl;
#endif
if(deg(g)==1)
{
root = bigrational(-coeff(g,0),coeff(g,1));
#ifdef TRACE_ROOTS
cout<<"root "<<root<<endl;
#endif
ans.push_back(root);
}
}
sort(ans.begin(), ans.end());
return ans;
}
// Return the list of *integral* roots of an integral polynomial.
// Intended for monic polys, but that is not a requirement
vector<bigint> introots(const ZPoly& f)
{
#ifdef TRACE_ROOTS
cout<<"Finding integer roots of polynomial f = "<<f<<endl;
#endif
vector<bigrational> ratroots = roots(f);
vector<bigint> ans;
if (ratroots.size()==0)
return ans;
for( const auto& r : ratroots)
if (den(r)==1)
ans.push_back(num(r));
sort(ans.begin(), ans.end());
return ans;
}
vector<bigrational> roots(const vector<bigint>& coeffs)
{
#ifdef TRACE_ROOTS
cout<<"Finding rational roots of polynomial f with coefficients "<<coeffs<<endl;
#endif
ZZX f;
vector<bigrational> ans;
int i, d = coeffs.size()-1; // degree
if(d<1)
return ans;
for(i=0; i<=d; i++)
SetCoeff(f,d-i,coeffs[i]);
#ifdef TRACE_ROOTS
cout<<"f = "<<f<<endl;
#endif
ans = roots(f);
#ifdef TRACE_ROOTS
cout<<"roots of f: "<< ans << endl;
#endif
return ans;
}
// root-finding functions for monic integer cubics and quartics
//
// With NTL we factor the polynomial in Z[X] and pick out degree 1 factors
vector<bigint> Introotscubic(const bigint& a, const bigint& b, const bigint& c)
{
ZZX f;
SetCoeff(f,3); // sets it to 1
SetCoeff(f,2,a);
SetCoeff(f,1,b);
SetCoeff(f,0,c);
return introots(f);
}
vector<bigint> Introotsquartic(const bigint& a, const bigint& b, const bigint& c, const bigint& d)
{
ZZX f; vec_pair_ZZX_long factors; bigint cont;
SetCoeff(f,4); // sets it to 1
SetCoeff(f,3,a);
SetCoeff(f,2,b);
SetCoeff(f,1,c);
SetCoeff(f,0,d);
return introots(f);
}
// find the number of roots of X^3 + bX^2 + cX + d = 0 (mod p)
int nrootscubic(const bigint& b, const bigint& c, const bigint& d, const bigint& p)
{
vector<bigint> coeffs;
coeffs.push_back(d);
coeffs.push_back(c);
coeffs.push_back(b);
coeffs.push_back(bigint(1));
return rootsmod(coeffs,p).size();
}
|