File: sub.cc

package info (click to toggle)
eclib 20250122-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 5,916 kB
  • sloc: cpp: 45,414; makefile: 272; sh: 127
file content (228 lines) | stat: -rw-r--r-- 6,467 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// sub.cc: implementation of subspace class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2023 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////

// Only to be included by subspace.cc

// definitions of member operators and functions:

// assignment
void subspace::operator=(const subspace& s)
{
  pivots=s.pivots;
  basis=s.basis;
  denom=s.denom;
}

// Definitions of nonmember, nonfriend operators and functions:

subspace combine(const subspace& s1, const subspace& s2)
{
  scalar d = s1.denom * s2.denom;
  const mat& b1=s1.basis;
  const mat& b2=s2.basis;
  mat b = b1*b2;
  scalar g = b.content();
  if(g>1)
    {
      d/=g; b/=g;
    }
  vec_i p = s1.pivots[s2.pivots];
  return subspace(b,p,d);
}

//Don't think the following is ever actually used...
mat expressvectors(const mat& m, const subspace& s)
{ vec_i p = pivots(s);
  long   n = dim(s);
  mat ans(n,m.ncols());
  for (int i=1; i<=n; i++) ans.setrow(i, m.row(p[i]));
  return ans;
}

//This one is used a lot:
// M is nxn;
// S is a subspace of dim d<=n with nxd basis B, whose pivotal rows are a multiple den of the dxd identity
// return A such that den*M*B = B*A
//
// Algorithm: restricting to pivotal rows on both sides: B restricts to den*I and M to M1 (say), so
// den*M1*B=den*A, so A=M1*B

mat restrict_mat(const mat& M, const subspace& S, int cr)
{
  if(dim(S)==M.nro) return M; // trivial special case, s is whole space
  const mat& B = S.basis;
  mat A = rowsubmat(M, S.pivots) * B;

  if(cr) // optional check that S is invariant under M
    {
      scalar m(DEFAULT_MODULUS);
      int check = (S.denom*matmulmodp(M,B,m) == matmulmodp(B,A,m));
      if (!check)
        cerr<<"Error in restrict_mat: subspace not invariant!"<<endl;
    }
  return A;
}

subspace kernel(const mat& m1, int method)
{
   long rank, nullity;
   scalar d;
   vec_i pcols,npcols;
   mat m = echelon(m1,pcols,npcols, rank, nullity, d, method);
   mat basis(m.ncols(),nullity);
   for (int n=1; n<=nullity; n++)
     basis.set(npcols[n],n,d);
   for (int r=1; r<=rank; r++)
   {
     int i = pcols[r];
     for (int j=1; j<=nullity; j++)
       basis.set(i,j, -m(r,npcols[j]));
   }
   return subspace(basis, npcols, d);
}

subspace image(const mat& m, int method)
{
  vec_i p,np;
  long rank, nullity;
  scalar d;
  mat b = transpose(echelon(transpose(m),p,np,rank,nullity,d,method));
  return subspace(b,p,d);
}

subspace eigenspace(const mat& m1, const scalar& lambda, int method)
{
  mat m = addscalar(m1,-lambda);
  return kernel(m,method);
}

subspace subeigenspace(const mat& m1, const scalar& l, const subspace& s, int method)
{
  mat m = restrict_mat(m1,s);
  subspace ss = eigenspace(m, l*(denom(s)),method);
  return combine(s,ss );
}

subspace pcombine(const subspace& s1, const subspace& s2, const scalar& pr)
{
  scalar   d = s1.denom * s2.denom;  // redundant since both should be 1
  const mat& b1=s1.basis,  b2=s2.basis;
  const mat& b = matmulmodp(b1,b2,pr);
  const vec_i& p = s1.pivots[s2.pivots];
  return subspace(b,p,d);
}

// Same as restrict_mat, but modulo pr
mat prestrict(const mat& M, const subspace& S, const scalar& pr, int cr)
{
  if(dim(S)==M.nro) return M; // trivial special case, s is whole space
  const mat& B = S.basis;
  mat A = matmulmodp(rowsubmat(M, S.pivots), B, pr);

  if(cr) // optional check that S is invariant under M
    {
      int check = (S.denom*matmulmodp(M,B,pr) == matmulmodp(B,A,pr));
      if (!check)
        cerr<<"Error in prestrict: subspace not invariant!"<<endl;
    }
  return A;
}

subspace oldpkernel(const mat& m1, const scalar& pr)   // using full echmodp
{
   long rank, nullity;
   vec_i pcols,npcols;
   mat m = echmodp(m1,pcols,npcols, rank, nullity, pr);
   mat basis(m.ncols(),nullity);
   for (int n=1; n<=nullity; n++)
     basis.set(npcols[n],n,scalar(1));
   for (int r=1; r<=rank; r++)
   {
     int i = pcols[r];
     for (int j=1; j<=nullity; j++)
       basis.set(i,j, mod(-m(r,npcols[j]),pr));
   }
   return subspace(basis, npcols, scalar(1));
}

// using echmodp_uptri, with no back-substitution
subspace pkernel(const mat& m1, const scalar& pr)
{
  long rank, nullity;
  vec_i pcols,npcols;
  mat m = echmodp_uptri(m1,pcols,npcols, rank, nullity, pr);
  mat basis(m.ncols(),nullity);
  for(int j=nullity; j>0; j--)
    {
      int jj = npcols[j];
      basis(jj,j) = 1;
      for(int i=rank; i>0; i--)
        {
          scalar temp = -m(i,jj);
          for(int t=rank; t>i; t--)
            {
              int tt=pcols[t];
              temp -= xmodmul(m(i,tt),basis(tt,j),pr);
              temp = xmod(temp,pr);
            }
          basis(pcols[i],j) = mod(temp,pr);
        }
    }
  return subspace(basis, npcols, scalar(1));
}

subspace pimage(const mat& m, const scalar& pr)
{
  vec_i p,np;
  long rank, nullity;
  const mat& b = transpose(echmodp(transpose(m),p,np,rank,nullity,pr));
  return subspace(b,p,scalar(1));
}

subspace peigenspace(const mat& m1, const scalar& lambda, const scalar& pr)
{
  const mat& m = addscalar(m1,-lambda);
  return pkernel(m,pr);
}

subspace psubeigenspace(const mat& m1, const scalar& l, const subspace& s, const scalar& pr)
{
  const mat& m = prestrict(m1,s,pr);
  const subspace& ss = peigenspace(m, l*(denom(s)),pr);
  return pcombine(s,ss,pr);
}


//Attempts to lift from a mod-p subspace to a normal Q-subspace by expressing
//basis as rational using modrat and clearing denominators
//
int lift(const subspace& s, const scalar& pr, subspace& ans)
{
  scalar dd;
  mat m;
  int ok = liftmat(s.basis,pr,m,dd);
  if (!ok)
    cerr << "Failed to lift subspace from mod "<<pr<<endl;
  ans = subspace(m, pivots(s), dd);
  return ok;
}