1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
// egros.cc: Implementation of functions for elliptic curves with good reduction outside S
//////////////////////////////////////////////////////////////////////////
//
// Copyright 2022 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/egros.h>
// Test whether a curve with good reduction outside S and this j-invariant could exist
// (using criteria from Cremona-Lingham)
int is_j_possible(const bigrational& j, const vector<bigint>& S)
{
static const bigint three(3);
bigint nj(num(j)), dj(den(j));
bigint mj = nj-1728*dj;
if (is_zero(mj)) // j==1728: Cremona-Lingham Prop. 4.1
return 1;
if (is_zero(nj)) // j==0: Cremona-Lingham Prop. 4.1
return std::find(S.begin(), S.end(), three) != S.end();
if (!is_S_integral(j, S))
return 0;
return // Cremona-Lingham Prop. 3.2
is_nth_power(prime_to_S_part(nj, S), 3)
&&
is_nth_power(prime_to_S_part(mj, S), 2);
}
// Return integers representing QQ(S,n)
vector<bigint> twist_factors(const vector<bigint>& S, int n)
// only intended for n=2,4,6
{
static const bigint one(1);
vector<bigint> wlist = {one,-one};
for (auto p: S)
{
vector<bigint> ppowers = {one};
for (int i=1; i<n; i++)
ppowers.push_back(ppowers[i-1]*p);
wlist = multiply_lists(wlist, ppowers);
}
return wlist;
}
// Return list of curves with good reduction outside S and j=1728
// using Cremona-Lingham Prop.4.2 and the remark following
vector<CurveRed> egros_from_j_1728(const vector<bigint>& S)
{
static const bigint zero(0);
static const bigint two(2);
vector<CurveRed> Elist;
int no2 = std::find(S.begin(), S.end(), two) == S.end();
vector<bigint> wlist = twist_factors(S, 4);
for (auto w: wlist)
{
if (no2) w *= 4;
Curve E(zero,zero,zero,w,zero);
Curvedata Emin(E, 1);
CurveRed Ered(Emin);
if (Ered.has_good_reduction_outside_S(S))
Elist.push_back(Ered);
}
std::sort(Elist.begin(), Elist.end());
return Elist;
}
// Return list of curves with good reduction outside S and j=1728
// using Cremona-Lingham Prop.4.1 and the remark following
vector<CurveRed> egros_from_j_0(const vector<bigint>& S)
{
static const bigint zero(0);
static const bigint two(2);
static const bigint three(3);
vector<CurveRed> Elist;
int no3 = std::find(S.begin(), S.end(), three) == S.end();
if (no3)
return Elist;
int no2 = std::find(S.begin(), S.end(), two) == S.end();
vector<bigint> wlist = twist_factors(S, 6);
for (auto w: wlist)
{
if (no2) w *= 16;
Curve E(zero,zero,zero,zero,w);
Curvedata Emin(E, 1);
CurveRed Ered(Emin);
if (Ered.has_good_reduction_outside_S(S))
Elist.push_back(Ered);
}
std::sort(Elist.begin(), Elist.end());
return Elist;
}
vector<CurveRed> egros_from_j(const bigrational& j, const vector<bigint>& S)
{
static const bigint zero(0);
static const bigint two(2);
static const bigint three(3);
vector<CurveRed> Elist;
// Return empty list if necessary conditions fail:
if (!is_j_possible(j, S))
return Elist;
bigint n = num(j);
bigint m = n-1728*den(j);
// Call special function if j=1728:
if (is_zero(m))
return egros_from_j_1728(S);
// Call special function if j=0:
if (is_zero(n))
return egros_from_j_0(S);
// Now j is not 0 or 1728, we take quadratic twists of a base curve:
vector<bigint> Sx = S;
vector<bigint> Sy = pdivs(n*m*(n-m));
vector<bigint> extra_primes;
for (auto p: Sy)
{
if (std::find(Sx.begin(), Sx.end(), p) == Sx.end())
{
Sx.push_back(p);
extra_primes.push_back(p);
}
}
vector<bigint> wlist = twist_factors(Sx, 2);
bigint a4 = -3*n*m;
bigint a6 = -2*n*m*m; // the base curve [0,0,0,a4,a6] has the right j-invariant
// We'll test twists of [0,0,0,a4,a6], whose discriminant is
// 1728n^2m^3(n-m). For primes p>3 not in S we already have
// ord_p(n)=0(3), ord_p(m)=0(2) and ord_p(n-m)=ord_p(denom(j))=0, so
// ord_p(disc)=0(6). For there to be any good twists we want
// ord_p(disc)=0(12). The twist by w is [0,0,0,w^2*a4,w^3*a6] which
// has disc w^6 times the that of the base curve. So for the
// 'extra' primes p (not in S) with ord_p(n)=3(6) we must have ord_p(w) odd,
// while for p with ord_p(m)=2(4) we must have ord_p(w) odd.
vector<bigint> a4a6primes;
for (auto p: extra_primes)
{
if ((p==two) || (p==three))
continue;
if ((val(p,n)%6==3) || (val(p,m)%4==2))
a4a6primes.push_back(p);
}
// cout << "extra_primes = "<<a4a6primes<<endl;
// cout << "a4a6primes = "<<a4a6primes<<endl;
int no2 = std::find(S.begin(), S.end(), two) == S.end();
for (auto w: wlist)
{
for (auto p: a4a6primes)
if(val(p,w)%2==0) continue;
if (no2)
w *= 16;
bigint w2 = w*w;
bigint w3 = w*w2;
Curve E(zero,zero,zero,w2*a4,w3*a6);
Curvedata Emin(E, 1);
CurveRed Ered(Emin);
if (Ered.has_good_reduction_outside_S(S))
Elist.push_back(Ered);
}
std::sort(Elist.begin(), Elist.end());
return Elist;
}
int conductor_exponent_bound(const bigint& p)
{
static const bigint two(2);
static const bigint three(3);
return (p==two? 8 : (p==three? 5 : 2));
}
int is_N_possible_helper(const bigint& N, const vector<bigint>& support)
{
for (auto p: support)
{
int np = val(p,N);
if ((np < 2) or (np > conductor_exponent_bound(p))) return 0;
}
return 1;
}
// Test whether N is a possible conductor for j=0: 3|N, no p||N and
// usual bounds on ord_p(N)
int is_N_possible_j_0(const bigint& N, const vector<bigint>& support)
{
static const bigint three(3);
return div(three,N) and is_N_possible_helper(N,support);
}
// Test whether N is a possible conductor for j=1728: 2|N, no p||N and
// usual bounds on ord_p(N)
int is_N_possible_j_1728(const bigint& N, const vector<bigint>& support)
{
static const bigint two(2);
return div(two,N) and is_N_possible_helper(N,support);
}
|