Prelude: JOHNA

· Responsiveness is not the same as performance

· Performance: how much work can be done in a given time

· Responsiveness: How often is the user interface in a state where the user can interact with it, how often is the user interface displaying accurate information

· These goals are sometimes mutually exclusive. To keep the UI continually updated and in an interactive state affects performance. Allowing the user to do two things at once affects the performance of both.

· Where these goals conflicted in the past, performance generally trumped responsiveness.

Problems: JOHNA

· Eclipse 2.1 and earlier were essentially single-threaded applications

· While doing anything long running, the UI was blocked with a progress monitor dialog or other form of blocking progress.

· Advantage: simple paradigm for developers. Don’t have to worry too much about thread safety, deadlocks, etc.

· Disadvantage: the user is always forced to wait, not even allowed to browse while waiting.

Examples: JM

· Open resource dialog (opens then populates the list of resources).

· Contributed decorations can be calculated and added to viewers after the initial contents have been shown.

· Check out a project from CVS. Must wait until entire project is loaded and compiled before you can even browse the loaded resources.

· Save a document. Must wait until auto-build is complete before continuing, even if you didn’t need it to be built immediately.

· Synchronize with repository. This doesn’t even modify local files, but you have to wait while it refreshes all projects in the workspace before you can start browsing changes and doing commits and updates.

· Launching an application for debug/running (simple)

· Task view updating and filtering (resource change listener)

Approach: JM

· Start with the worst offenders instead of trying to solve everything at once

· Give control back to the user as soon as possible

· Offload expensive processing to background thread

· Use a work queue to combine/buffer background processing

Overview of new features

· 1 In a pluggable environment, nobody has complete knowledge of what is happening. Hard to coordinate work to avoid bottlenecks and prevent deadlock. (JOHNA) (thrashing when everyone tries to do something at once)

· Job: a unit of work scheduled to run asynchronously

· Why not just java.lang.Thread?

· Lighter weight: uses a thread pool to avoid creating too many threads

· Support for progress feedback and cancellation

· Priorities and mutual exclusion

· Richer scheduling: run now, run later, run repeatedly

· Job listeners can find out when jobs start, finish

· Slide with example job.

· 2 User needs to know when things are happening in the background (jm)

· (UI design principle: when user initiates action, there should be feedback within 100ms)

· Jobs report progress which is shown in the UI.

· Progress animation lets the user know when something is happening:

· workbench icon animation,

· view specific progress indicator (e.g. busy/wait cursor and view animating icon)

· Progress groups: for grouping related jobs

· System jobs: user only needs to know about jobs they initiated

· Prompt for information without interrupting the user (IProgressService::requestInUI)

· Errors occurring in the background are important enough to interrupt the user.

· 3 UI becomes distracting because it is changing under the user’s feet. (jm)

· UIJob: a unit of work scheduled to run in UI thread

· Can be used to batch and delay UI updates

· DeferredTreeContentManager: Infrastructure for lazy population of trees

· Batch updates to the UI to prevent flashing

· 4 UI is now often in a transient or stale state. (jm)

· WorkbenchPart will provide default progress hint if job is scheduled via the part is running.

· Gray items that are transient or stale (examples: problem markers in Java files, resources in Synchronize View)

· Plugin specific feedback should be avoided if possible to ensure that the UI doesn’t become to distracting (e.g. progress monitor shown in every view)

· 5 More threads means more resource contention and deadlock risk

· ILock a reentrant lock that can be used to protect plugin specific data structures. Features: deadlock detection and Display::syncExec lock transfer

· ISchedulingRule

· Reduce contention by using fined-grained locking

· 6 Contention can block the user and make responsiveness worse (the user tries to do something but is blocked by some long running operation happening in the background.

· UI thread contention support (auto prompting of progress dialog)

· IProgressService::busyCursorWhile helper for showing progress

· 7 Resources plug-in did not have good concurrency support

· Changing a resource now only locks a portion of the workspace, allowing concurrent modification of the workspace

· New workspace.run() methods that take scheduling rule to avoid locking the entire workspace

· IResource implements ISchedulingRule

· Auto-build (and auto-build events) moved into background job to reduce perceived duration of operations

· Resource changes now broadcast periodically during operations. Example: can view files in a project that is in the middle of being checked out from the repository (unbounded duration of resource change batching increased the amount of staleness in the UI)

Lessons Learned (jm)

· Improved responsiveness doesn’t come for free. Trade-off is added complexity of code

· Infrastructure has been added to Eclipse to help you adapt

· Need to be aware of concurrency requirements of code you’re calling: locks acquired, assumptions about UI thread, support for multi-threading, etc

· Avoid deadlock by not calling third party code while locks are owned

Demo

