1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/******************************************************************************
* Copyright (c) 2000-2016 Ericsson Telecom AB
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* Balasko, Jeno
* Delic, Adam
* Forstner, Matyas
* Gecse, Roland
* Raduly, Csaba
* Szabados, Kristof
* Szabo, Janos Zoltan – initial implementation
*
******************************************************************************/
#ifndef _Common_vector_HH
#define _Common_vector_HH
#ifdef __SUNPRO_CC
/**
* Inclusion of the STL vector header file prevents the Sun Forte 6.2 C++
* compiler from a mysterious internal error.
*/
#include <vector>
#include <stdio.h>
#endif
#include "error.h"
#include "../common/memory.h"
#include <string.h> // for memmove
/**
* Container optimized to store elements sequentially,
* and access them randomly, referenced by indices.
*
* Accessing an element has constant time cost.
* Adding an element at the end has amortized constant time const.
* Other operations (adding at the beginning, replacing/deleting elements)
* have linear time cost.
*
* If there aren't elements in the buffer, then no space is allocated.
* If there are, the size of the allocated buffer is the smallest power of 2
* that is not smaller than the number of elements (num_e).
*
* The container stores pointers to objects of type T; it doesn't own them.
* It is the responsibility of the caller to create and destroy the objects
* and supply the pointers to the container.
*
* \ingroup containers
*/
template<class T>
class vector {
private:
size_t num_e;
T **e_ptr;
static const size_t initial_size = 1, increment_factor = 2;
/** Copy constructor: DO NOT IMPLEMENT! */
vector(const vector&);
/** Copy assignment: DO NOT IMPLEMENT! */
vector& operator=(const vector&);
public:
static const size_t max_vector_length = -1;
/** Creates an empty vector. */
vector() : num_e(0), e_ptr(NULL) { }
/** Deallocates its memory. If the container is not empty,
* FATAL_ERROR occurs, so before destructing, clear() must be
* invoked explicitly.
*/
~vector() {
if (num_e > 0) FATAL_ERROR("vector::~vector(): vector is not empty");
Free(e_ptr);
}
/** Returns the number of elements in the container. */
size_t size() const { return num_e; }
/** Returns true if the container has no elements. */
bool empty() const { return num_e == 0; }
/** Erases the entire container. */
void clear() {
num_e = 0;
Free(e_ptr);
e_ptr = NULL;
}
/** Appends the \a elem to the end of vector. */
void add(T *elem) {
if (e_ptr == NULL) {
e_ptr = static_cast<T**>(Malloc(initial_size * sizeof(*e_ptr)));
} else {
size_t max_e = initial_size;
while (max_e < num_e) max_e *= increment_factor;
if (max_e <= num_e) {
if (max_e >= max_vector_length / increment_factor)
FATAL_ERROR("vector::add(): vector index overflow");
e_ptr = static_cast<T**>
(Realloc(e_ptr, max_e * increment_factor * sizeof(*e_ptr)));
}
}
e_ptr[num_e++] = elem;
}
/** Inserts the \a elem to the beginning of vector. */
void add_front(T *elem) {
if (e_ptr == NULL) {
e_ptr = static_cast<T**>(Malloc(initial_size * sizeof(*e_ptr)));
} else {
size_t max_e = initial_size;
while (max_e < num_e) max_e *= increment_factor;
if (max_e <= num_e) {
if (max_e >= max_vector_length / increment_factor)
FATAL_ERROR("vector::add_front(): vector index overflow");
e_ptr = static_cast<T**>
(Realloc(e_ptr, max_e * increment_factor * sizeof(*e_ptr)));
}
}
memmove(e_ptr + 1, e_ptr, num_e * sizeof(*e_ptr));
num_e++;
e_ptr[0] = elem;
}
/** Returns the <em>n</em>th element. The index of the first element is
* zero. If no such index, then FATAL_ERROR occurs. */
T* operator[](size_t n) const {
if (n >= num_e)
FATAL_ERROR("vector::operator[](size_t) const: index overflow");
return e_ptr[n];
}
/** Returns the <em>n</em>th element. The index of the first element is
* zero. If no such index, then FATAL_ERROR occurs. */
T*& operator[](size_t n) {
if (n >= num_e)
FATAL_ERROR("vector::operator[](size_t): index overflow");
return e_ptr[n];
}
/** Replaces \a n elements beginning from position \a pos
* with elements in \a v. If \a pos+n > size() then FATAL_ERROR occurs.
* If \a v == NULL then deletes the elements.
*/
void replace(size_t pos, size_t n, const vector *v = NULL) {
if (pos > num_e) FATAL_ERROR("vector::replace(): position points over " \
"the last element");
else if (n > num_e - pos) FATAL_ERROR("vector::replace(): not enough " \
"elements after the start position");
else if (v == this) FATAL_ERROR("vector::replace(): trying to replace " \
"the original vector");
size_t v_len = v != NULL ? v->num_e : 0;
if (v_len > max_vector_length - num_e + n)
FATAL_ERROR("vector::replace(): resulting vector size exceeds maximal " \
"length");
size_t new_len = num_e - n + v_len;
if (new_len > num_e) {
size_t max_e = initial_size;
if (e_ptr == NULL) {
while (max_e < new_len) max_e *= increment_factor;
e_ptr = static_cast<T**>(Malloc(max_e * sizeof(*e_ptr)));
} else {
while (max_e < num_e) max_e *= increment_factor;
if (new_len > max_e) {
while (max_e < new_len) max_e *= increment_factor;
e_ptr = static_cast<T**>(Realloc(e_ptr, max_e * sizeof(*e_ptr)));
}
}
}
if (pos + n < num_e && v_len != n) memmove(e_ptr + pos + v_len,
e_ptr + pos + n, (num_e - pos - n) * sizeof(*e_ptr));
if (v_len > 0) memcpy(e_ptr + pos, v->e_ptr, v_len * sizeof(*e_ptr));
if (new_len < num_e) {
if (new_len == 0) {
Free(e_ptr);
e_ptr = NULL;
} else {
size_t max_e = initial_size;
while (max_e < num_e) max_e *= increment_factor;
size_t max_e2 = initial_size;
while (max_e2 < new_len) max_e2 *= increment_factor;
if (max_e2 < max_e)
e_ptr = static_cast<T**>(Realloc(e_ptr, max_e2 * sizeof(*e_ptr)));
}
}
num_e = new_len;
}
/**
* Copies a part of the vector to a new vector. The part is
* specified by the starting position (<em>pos</em>) and the number
* of elements (<em>n</em>) to copy. If <em>n</em> is greater than
* the number of elements beginning from the given <em>pos</em>,
* then the returned vector contains less elements.
*
* \note The pointers are copied, the objects they refer to will not
* be duplicated.
*/
vector* subvector(size_t pos = 0, size_t n = max_vector_length) const
{
if (pos > num_e) FATAL_ERROR("vector::subvector(): position points " \
"over last vector element");
if (n > num_e - pos) n = num_e - pos;
vector *tmp_vector = new vector;
if (n > 0) {
size_t max_e = initial_size;
while (max_e < n) max_e *= increment_factor;
tmp_vector->e_ptr = static_cast<T**>(Malloc(max_e * sizeof(*e_ptr)));
memcpy(tmp_vector->e_ptr, e_ptr + pos, n * sizeof(*e_ptr));
tmp_vector->num_e = n;
}
return tmp_vector;
}
}; // class vector
/**
* Container to store simple types (can have constructor, but it should be fast)
* that are simple and small, stores the objects and not the pointers (copy
* constructor must be implemented). The capacity is increased to be always the
* power of two, the container capacity is never decreased. An initial
* capacity value can be supplied to the constructor, this can be used to avoid
* any further memory allocations during the life of the container.
*/
template<class T>
class dynamic_array {
private:
size_t count;
size_t capacity; // 0,1,2,4,8,...
T* data;
void clean_up();
void copy_content(const dynamic_array& other);
public:
dynamic_array() : count(0), capacity(0), data(NULL) {}
// to avoid reallocations and copying
dynamic_array(size_t init_capacity) : count(0), capacity(init_capacity), data(NULL)
{ if (capacity>0) data = new T[capacity]; }
dynamic_array(const dynamic_array& other) : count(0), capacity(0), data(NULL) { copy_content(other); }
dynamic_array& operator=(const dynamic_array& other) { clean_up(); copy_content(other); return *this; }
~dynamic_array() { clean_up(); }
bool operator==(const dynamic_array& other) const;
bool operator!=(const dynamic_array& other) const { return (!(*this==other)); }
/** Returns the number of elements in the container. */
size_t size() const { return count; }
/** Erases the entire container. */
void clear() { clean_up(); }
/** Appends the \a elem to the end of vector. */
void add(const T& elem);
/** Removes an element that is at index \a idx */
void remove(size_t idx);
/** Returns the <em>n</em>th element. The index of the first element is
* zero. If no such index, then FATAL_ERROR occurs. */
const T& operator[](size_t n) const {
if (n>=count) FATAL_ERROR("dynamic_array::operator[] const: index overflow");
return data[n];
}
/** Returns the <em>n</em>th element. The index of the first element is
* zero. If no such index, then FATAL_ERROR occurs. */
T& operator[](size_t n) {
if (n>=count) FATAL_ERROR("dynamic_array::operator[]: index overflow");
return data[n];
}
}; // class dynamic_array
template<class T>
void dynamic_array<T>::clean_up()
{
delete[] data;
data = NULL;
capacity = 0;
count = 0;
}
template<class T>
void dynamic_array<T>::copy_content(const dynamic_array<T>& other)
{
capacity = other.capacity;
count = other.count;
if (capacity>0) {
data = new T[capacity];
for (size_t i=0; i<count; i++) data[i] = other.data[i];
}
}
template<class T>
bool dynamic_array<T>::operator==(const dynamic_array<T>& other) const
{
if (count!=other.count) return false;
for (size_t i=0; i<count; i++) if (!(data[i]==other.data[i])) return false;
return true;
}
template<class T>
void dynamic_array<T>::add(const T& elem)
{
if (data==NULL) {
capacity = 1;
count = 1;
data = new T[1];
data[0] = elem;
} else {
if (count<capacity) {
data[count] = elem;
count++;
} else {
// no more room, need to allocate new memory
if (capacity==0) FATAL_ERROR("dynamic_array::add()");
capacity *= 2;
T* new_data = new T[capacity];
for (size_t i=0; i<count; i++) new_data[i] = data[i];
delete[] data;
data = new_data;
data[count] = elem;
count++;
}
}
}
template<class T>
void dynamic_array<T>::remove(size_t idx)
{
if (idx>=count) FATAL_ERROR("dynamic_array::remove(): index overflow");
for (size_t i=idx+1; i<count; i++) data[i-1] = data[i];
count--;
}
#endif // _Common_vector_HH
|