File: TreeWizard.java

package info (click to toggle)
eclipselink 2.7.11-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,820 kB
  • sloc: java: 477,843; xml: 503; makefile: 21
file content (537 lines) | stat: -rw-r--r-- 21,552 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 [The "BSD license"]
 Copyright (c) 2005-2009 Terence Parr
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the distribution.
 3. The name of the author may not be used to endorse or promote products
     derived from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.eclipse.persistence.internal.libraries.antlr.runtime.tree;

import org.eclipse.persistence.internal.libraries.antlr.runtime.Token;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/** Build and navigate trees with this object.  Must know about the names
 *  of tokens so you have to pass in a map or array of token names (from which
 *  this class can build the map).  I.e., Token DECL means nothing unless the
 *  class can translate it to a token type.
 *
 *  In order to create nodes and navigate, this class needs a TreeAdaptor.
 *
 *  This class can build a token type → node index for repeated use or for
 *  iterating over the various nodes with a particular type.
 *
 *  This class works in conjunction with the TreeAdaptor rather than moving
 *  all this functionality into the adaptor.  An adaptor helps build and
 *  navigate trees using methods.  This class helps you do it with string
 *  patterns like "(A B C)".  You can create a tree from that pattern or
 *  match subtrees against it.
 */
public class TreeWizard {
    protected TreeAdaptor adaptor;
    protected Map<String, Integer> tokenNameToTypeMap;

    public interface ContextVisitor {
        // TODO: should this be called visit or something else?
        public void visit(Object t, Object parent, int childIndex, Map<String, Object> labels);
    }

    public static abstract class Visitor implements ContextVisitor {
        @Override
        public void visit(Object t, Object parent, int childIndex, Map<String, Object> labels) {
            visit(t);
        }
        public abstract void visit(Object t);
    }

    /** When using %label:TOKENNAME in a tree for parse(), we must
     *  track the label.
     */
    public static class TreePattern extends CommonTree {
        public String label;
        public boolean hasTextArg;
        public TreePattern(Token payload) {
            super(payload);
        }
        @Override
        public String toString() {
            if ( label!=null ) {
                return "%"+label+":"+super.toString();
            }
            else {
                return super.toString();
            }
        }
    }

    public static class WildcardTreePattern extends TreePattern {
        public WildcardTreePattern(Token payload) {
            super(payload);
        }
    }

    /** This adaptor creates TreePattern objects for use during scan() */
    public static class TreePatternTreeAdaptor extends CommonTreeAdaptor {
        @Override
        public Object create(Token payload) {
            return new TreePattern(payload);
        }
    }

    // TODO: build indexes for the wizard

    /** During fillBuffer(), we can make a reverse index from a set
     *  of token types of interest to the list of indexes into the
     *  node stream.  This lets us convert a node pointer to a
     *  stream index semi-efficiently for a list of interesting
     *  nodes such as function definition nodes (you'll want to seek
     *  to their bodies for an interpreter).  Also useful for doing
     *  dynamic searches; i.e., go find me all PLUS nodes.
    protected Map tokenTypeToStreamIndexesMap;

    /** If tokenTypesToReverseIndex set to INDEX_ALL then indexing
     *  occurs for all token types.
    public static final Set INDEX_ALL = new HashSet();

    /** A set of token types user would like to index for faster lookup.
     *  If this is INDEX_ALL, then all token types are tracked.  If null,
     *  then none are indexed.
    protected Set tokenTypesToReverseIndex = null;
    */

    public TreeWizard(TreeAdaptor adaptor) {
        this.adaptor = adaptor;
    }

    public TreeWizard(TreeAdaptor adaptor, Map<String, Integer> tokenNameToTypeMap) {
        this.adaptor = adaptor;
        this.tokenNameToTypeMap = tokenNameToTypeMap;
    }

    public TreeWizard(TreeAdaptor adaptor, String[] tokenNames) {
        this.adaptor = adaptor;
        this.tokenNameToTypeMap = computeTokenTypes(tokenNames);
    }

    public TreeWizard(String[] tokenNames) {
        this(new CommonTreeAdaptor(), tokenNames);
    }

    /** Compute a Map&lt;String, Integer&gt; that is an inverted index of
     *  tokenNames (which maps int token types to names).
     */
    public Map<String, Integer> computeTokenTypes(String[] tokenNames) {
        Map<String, Integer> m = new HashMap<String, Integer>();
        if ( tokenNames==null ) {
            return m;
        }
        for (int ttype = Token.MIN_TOKEN_TYPE; ttype < tokenNames.length; ttype++) {
            String name = tokenNames[ttype];
            m.put(name, ttype);
        }
        return m;
    }

    /** Using the map of token names to token types, return the type. */
    public int getTokenType(String tokenName) {
         if ( tokenNameToTypeMap==null ) {
             return Token.INVALID_TOKEN_TYPE;
         }
        Integer ttypeI = tokenNameToTypeMap.get(tokenName);
        if ( ttypeI!=null ) {
            return ttypeI;
        }
        return Token.INVALID_TOKEN_TYPE;
    }

    /** Walk the entire tree and make a node name to nodes mapping.
     *  For now, use recursion but later nonrecursive version may be
     *  more efficient.  Returns Map&lt;Integer, List&gt; where the List is
     *  of your AST node type.  The Integer is the token type of the node.
     *
     *  TODO: save this index so that find and visit are faster
     */
    public Map<Integer, List<Object>> index(Object t) {
        Map<Integer, List<Object>> m = new HashMap<Integer, List<Object>>();
        _index(t, m);
        return m;
    }

    /** Do the work for index */
    protected void _index(Object t, Map<Integer, List<Object>> m) {
        if ( t==null ) {
            return;
        }
        int ttype = adaptor.getType(t);
        List<Object> elements = m.get(ttype);
        if ( elements==null ) {
            elements = new ArrayList<Object>();
            m.put(ttype, elements);
        }
        elements.add(t);
        int n = adaptor.getChildCount(t);
        for (int i=0; i<n; i++) {
            Object child = adaptor.getChild(t, i);
            _index(child, m);
        }
    }

    /** Return a List of tree nodes with token type ttype */
    public List<? extends Object> find(Object t, int ttype) {
        final List<Object> nodes = new ArrayList<Object>();
        visit(t, ttype, new TreeWizard.Visitor() {
            @Override
            public void visit(Object t) {
                nodes.add(t);
            }
        });
        return nodes;
    }

    /** Return a List of subtrees matching pattern. */
    public List<? extends Object> find(Object t, String pattern) {
        final List<Object> subtrees = new ArrayList<Object>();
        // Create a TreePattern from the pattern
        TreePatternLexer tokenizer = new TreePatternLexer(pattern);
        TreePatternParser parser =
            new TreePatternParser(tokenizer, this, new TreePatternTreeAdaptor());
        final TreePattern tpattern = (TreePattern)parser.pattern();
        // don't allow invalid patterns
        if ( tpattern==null ||
             tpattern.isNil() ||
             tpattern.getClass()==WildcardTreePattern.class )
        {
            return null;
        }
        int rootTokenType = tpattern.getType();
        visit(t, rootTokenType, new TreeWizard.ContextVisitor() {
            @Override
            public void visit(Object t, Object parent, int childIndex, Map labels) {
                if ( _parse(t, tpattern, null) ) {
                    subtrees.add(t);
                }
            }
        });
        return subtrees;
    }

    public Object findFirst(Object t, int ttype) {
        return null;
    }

    public Object findFirst(Object t, String pattern) {
        return null;
    }

    /** Visit every ttype node in t, invoking the visitor.  This is a quicker
     *  version of the general visit(t, pattern) method.  The labels arg
     *  of the visitor action method is never set (it's null) since using
     *  a token type rather than a pattern doesn't let us set a label.
     */
    public void visit(Object t, int ttype, ContextVisitor visitor) {
        _visit(t, null, 0, ttype, visitor);
    }

    /** Do the recursive work for visit */
    protected void _visit(Object t, Object parent, int childIndex, int ttype, ContextVisitor visitor) {
        if ( t==null ) {
            return;
        }
        if ( adaptor.getType(t)==ttype ) {
            visitor.visit(t, parent, childIndex, null);
        }
        int n = adaptor.getChildCount(t);
        for (int i=0; i<n; i++) {
            Object child = adaptor.getChild(t, i);
            _visit(child, t, i, ttype, visitor);
        }
    }

    /** For all subtrees that match the pattern, execute the visit action.
     *  The implementation uses the root node of the pattern in combination
     *  with visit(t, ttype, visitor) so nil-rooted patterns are not allowed.
     *  Patterns with wildcard roots are also not allowed.
     */
    public void visit(Object t, final String pattern, final ContextVisitor visitor) {
        // Create a TreePattern from the pattern
        TreePatternLexer tokenizer = new TreePatternLexer(pattern);
        TreePatternParser parser =
            new TreePatternParser(tokenizer, this, new TreePatternTreeAdaptor());
        final TreePattern tpattern = (TreePattern)parser.pattern();
        // don't allow invalid patterns
        if ( tpattern==null ||
             tpattern.isNil() ||
             tpattern.getClass()==WildcardTreePattern.class )
        {
            return;
        }
        final Map<String, Object> labels = new HashMap<String, Object>(); // reused for each _parse
        int rootTokenType = tpattern.getType();
        visit(t, rootTokenType, new TreeWizard.ContextVisitor() {
            @Override
            public void visit(Object t, Object parent, int childIndex, Map<String, Object> unusedlabels) {
                // the unusedlabels arg is null as visit on token type doesn't set.
                labels.clear();
                if ( _parse(t, tpattern, labels) ) {
                    visitor.visit(t, parent, childIndex, labels);
                }
            }
        });
    }

    /** Given a pattern like (ASSIGN %lhs:ID %rhs:.) with optional labels
     *  on the various nodes and '.' (dot) as the node/subtree wildcard,
     *  return true if the pattern matches and fill the labels Map with
     *  the labels pointing at the appropriate nodes.  Return false if
     *  the pattern is malformed or the tree does not match.
     *
     *  If a node specifies a text arg in pattern, then that must match
     *  for that node in t.
     *
     *  TODO: what's a better way to indicate bad pattern? Exceptions are a hassle
     */
    public boolean parse(Object t, String pattern, Map<String, Object> labels) {
        TreePatternLexer tokenizer = new TreePatternLexer(pattern);
        TreePatternParser parser =
            new TreePatternParser(tokenizer, this, new TreePatternTreeAdaptor());
        TreePattern tpattern = (TreePattern)parser.pattern();
        /*
        System.out.println("t="+((Tree)t).toStringTree());
        System.out.println("scant="+tpattern.toStringTree());
        */
        boolean matched = _parse(t, tpattern, labels);
        return matched;
    }

    public boolean parse(Object t, String pattern) {
        return parse(t, pattern, null);
    }

    /** Do the work for parse. Check to see if the t2 pattern fits the
     *  structure and token types in t1.  Check text if the pattern has
     *  text arguments on nodes.  Fill labels map with pointers to nodes
     *  in tree matched against nodes in pattern with labels.
     */
    protected boolean _parse(Object t1, TreePattern tpattern, Map<String, Object> labels) {
        // make sure both are non-null
        if ( t1==null || tpattern==null ) {
            return false;
        }
        // check roots (wildcard matches anything)
        if ( tpattern.getClass() != WildcardTreePattern.class ) {
            if ( adaptor.getType(t1) != tpattern.getType() ) return false;
            // if pattern has text, check node text
            if ( tpattern.hasTextArg && !adaptor.getText(t1).equals(tpattern.getText()) ) {
                return false;
            }
        }
        if ( tpattern.label!=null && labels!=null ) {
            // map label in pattern to node in t1
            labels.put(tpattern.label, t1);
        }
        // check children
        int n1 = adaptor.getChildCount(t1);
        int n2 = tpattern.getChildCount();
        if ( n1 != n2 ) {
            return false;
        }
        for (int i=0; i<n1; i++) {
            Object child1 = adaptor.getChild(t1, i);
            TreePattern child2 = (TreePattern)tpattern.getChild(i);
            if ( !_parse(child1, child2, labels) ) {
                return false;
            }
        }
        return true;
    }

    /** Create a tree or node from the indicated tree pattern that closely
     *  follows ANTLR tree grammar tree element syntax:
     *
     *         (root child1 ... child2).
     *
     *  You can also just pass in a node: ID
     *
     *  Any node can have a text argument: ID[foo]
     *  (notice there are no quotes around foo--it's clear it's a string).
     *
     *  nil is a special name meaning "give me a nil node".  Useful for
     *  making lists: (nil A B C) is a list of A B C.
      */
    public Object create(String pattern) {
        TreePatternLexer tokenizer = new TreePatternLexer(pattern);
        TreePatternParser parser = new TreePatternParser(tokenizer, this, adaptor);
        Object t = parser.pattern();
        return t;
    }

    /** Compare t1 and t2; return true if token types/text, structure match exactly.
     *  The trees are examined in their entirety so that (A B) does not match
     *  (A B C) nor (A (B C)).
     // TODO: allow them to pass in a comparator
     *  TODO: have a version that is nonstatic so it can use instance adaptor
     *
     *  I cannot rely on the tree node's equals() implementation as I make
     *  no constraints at all on the node types nor interface etc...
     */
    public static boolean equals(Object t1, Object t2, TreeAdaptor adaptor) {
        return _equals(t1, t2, adaptor);
    }

    /** Compare type, structure, and text of two trees, assuming adaptor in
     *  this instance of a TreeWizard.
     */
    public boolean equals(Object t1, Object t2) {
        return _equals(t1, t2, adaptor);
    }

    protected static boolean _equals(Object t1, Object t2, TreeAdaptor adaptor) {
        // make sure both are non-null
        if ( t1==null || t2==null ) {
            return false;
        }
        // check roots
        if ( adaptor.getType(t1) != adaptor.getType(t2) ) {
            return false;
        }
        if ( !adaptor.getText(t1).equals(adaptor.getText(t2)) ) {
            return false;
        }
        // check children
        int n1 = adaptor.getChildCount(t1);
        int n2 = adaptor.getChildCount(t2);
        if ( n1 != n2 ) {
            return false;
        }
        for (int i=0; i<n1; i++) {
            Object child1 = adaptor.getChild(t1, i);
            Object child2 = adaptor.getChild(t2, i);
            if ( !_equals(child1, child2, adaptor) ) {
                return false;
            }
        }
        return true;
    }

    // TODO: next stuff taken from CommonTreeNodeStream

        /** Given a node, add this to the reverse index tokenTypeToStreamIndexesMap.
     *  You can override this method to alter how indexing occurs.  The
     *  default is to create a
     *
     *    Map<Integer token type,ArrayList<Integer stream index>>
     *
     *  This data structure allows you to find all nodes with type INT in order.
     *
     *  If you really need to find a node of type, say, FUNC quickly then perhaps
     *
     *    Map<Integertoken type,Map<Object tree node,Integer stream index>>
     *
     *  would be better for you.  The interior maps map a tree node to
     *  the index so you don't have to search linearly for a specific node.
     *
     *  If you change this method, you will likely need to change
     *  getNodeIndex(), which extracts information.
    protected void fillReverseIndex(Object node, int streamIndex) {
        //System.out.println("revIndex "+node+"@"+streamIndex);
        if ( tokenTypesToReverseIndex==null ) {
            return; // no indexing if this is empty (nothing of interest)
        }
        if ( tokenTypeToStreamIndexesMap==null ) {
            tokenTypeToStreamIndexesMap = new HashMap(); // first indexing op
        }
        int tokenType = adaptor.getType(node);
        Integer tokenTypeI = new Integer(tokenType);
        if ( !(tokenTypesToReverseIndex==INDEX_ALL ||
               tokenTypesToReverseIndex.contains(tokenTypeI)) )
        {
            return; // tokenType not of interest
        }
        Integer streamIndexI = new Integer(streamIndex);
        ArrayList indexes = (ArrayList)tokenTypeToStreamIndexesMap.get(tokenTypeI);
        if ( indexes==null ) {
            indexes = new ArrayList(); // no list yet for this token type
            indexes.add(streamIndexI); // not there yet, add
            tokenTypeToStreamIndexesMap.put(tokenTypeI, indexes);
        }
        else {
            if ( !indexes.contains(streamIndexI) ) {
                indexes.add(streamIndexI); // not there yet, add
            }
        }
    }

    /** Track the indicated token type in the reverse index.  Call this
     *  repeatedly for each type or use variant with Set argument to
     *  set all at once.
     * @param tokenType
    public void reverseIndex(int tokenType) {
        if ( tokenTypesToReverseIndex==null ) {
            tokenTypesToReverseIndex = new HashSet();
        }
        else if ( tokenTypesToReverseIndex==INDEX_ALL ) {
            return;
        }
        tokenTypesToReverseIndex.add(new Integer(tokenType));
    }

    /** Track the indicated token types in the reverse index. Set
     *  to INDEX_ALL to track all token types.
    public void reverseIndex(Set tokenTypes) {
        tokenTypesToReverseIndex = tokenTypes;
    }

    /** Given a node pointer, return its index into the node stream.
     *  This is not its Token stream index.  If there is no reverse map
     *  from node to stream index or the map does not contain entries
     *  for node's token type, a linear search of entire stream is used.
     *
     *  Return -1 if exact node pointer not in stream.
    public int getNodeIndex(Object node) {
        //System.out.println("get "+node);
        if ( tokenTypeToStreamIndexesMap==null ) {
            return getNodeIndexLinearly(node);
        }
        int tokenType = adaptor.getType(node);
        Integer tokenTypeI = new Integer(tokenType);
        ArrayList indexes = (ArrayList)tokenTypeToStreamIndexesMap.get(tokenTypeI);
        if ( indexes==null ) {
            //System.out.println("found linearly; stream index = "+getNodeIndexLinearly(node));
            return getNodeIndexLinearly(node);
        }
        for (int i = 0; i < indexes.size(); i++) {
            Integer streamIndexI = (Integer)indexes.get(i);
            Object n = get(streamIndexI.intValue());
            if ( n==node ) {
                //System.out.println("found in index; stream index = "+streamIndexI);
                return streamIndexI.intValue(); // found it!
            }
        }
        return -1;
    }

    */
}