1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
/**
* Copyright (C) 2006-2007 International Business Machines Corp.
* Author(s): Trevor S. Highland <trevor.highland@gmail.com>
* Mike Halcrow <mhalcrow@us.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
#include <fcntl.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <syslog.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <libgen.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <openssl/err.h>
#include <openssl/engine.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "../include/ecryptfs.h"
#include "../include/decision_graph.h"
struct openssl_data {
char *path;
char *passphrase;
};
static void
ecryptfs_openssl_destroy_openssl_data(struct openssl_data *openssl_data)
{
free(openssl_data->path);
free(openssl_data->passphrase);
memset(openssl_data, 0, sizeof(struct openssl_data));
}
/**
* ecryptfs_openssl_deserialize
* @openssl_data: The deserialized version of the key module data;
* internal components pointed to blob memory
* @blob: The key module-specific state blob
*
*/
static int ecryptfs_openssl_deserialize(struct openssl_data *openssl_data,
unsigned char *blob)
{
size_t path_length;
size_t passphrase_length;
size_t i = 0;
path_length = blob[i++] % 256;
path_length += blob[i++] << 8;
i += path_length;
passphrase_length = blob[i++] % 256;
passphrase_length += blob[i++] << 8;
openssl_data->path = (char *) blob + 2;
openssl_data->passphrase = (openssl_data->path + path_length + 2);
return 0;
}
/**
* @blob: Callee allocates this memory
*/
static int ecryptfs_openssl_serialize(unsigned char *blob, size_t *blob_size,
struct openssl_data *openssl_data)
{
size_t path_length;
size_t passphrase_length;
size_t i = 0;
int rc = 0;
(*blob_size) = 0;
if (!openssl_data->path || !openssl_data->passphrase) {
rc = -EINVAL;
syslog(LOG_ERR, "openssl_data internal structure not "
"properly filled in\n");
goto out;
}
path_length = strlen(openssl_data->path) + 1; /* + '\0' */
passphrase_length = strlen(openssl_data->passphrase) + 1;
(*blob_size) = (2 + path_length + 2 + passphrase_length);
if (!blob)
goto out;
blob[i++] = path_length % 256;
blob[i++] = path_length >> 8;
memcpy(&blob[i], openssl_data->path, path_length);
i += path_length;
blob[i++] = passphrase_length % 256;
blob[i++] = passphrase_length >> 8;
memcpy(&blob[i], openssl_data->passphrase, passphrase_length);
out:
return rc;
}
struct ecryptfs_subgraph_ctx {
struct ecryptfs_key_mod *key_mod;
struct openssl_data openssl_data;
};
static void
ecryptfs_openssl_destroy_subgraph_ctx(struct ecryptfs_subgraph_ctx *ctx)
{
ecryptfs_openssl_destroy_openssl_data(&ctx->openssl_data);
memset(ctx, 0, sizeof(struct ecryptfs_subgraph_ctx));
}
/**
* ecryptfs_openssl_generate_signature
* @sig: Generated sig (ECRYPTFS_SIG_SIZE_HEX + 1 bytes of allocated memory)
* @key: RSA key from which to generate sig
*/
static int ecryptfs_openssl_generate_signature(char *sig, RSA *key)
{
int len, nbits, ebits, i;
int nbytes, ebytes;
unsigned char *hash;
unsigned char *data = NULL;
int rc = 0;
hash = malloc(SHA_DIGEST_LENGTH);
if (!hash) {
syslog(LOG_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
nbits = BN_num_bits(key->n);
nbytes = nbits / 8;
if (nbits % 8)
nbytes++;
ebits = BN_num_bits(key->e);
ebytes = ebits / 8;
if (ebits % 8)
ebytes++;
len = 10 + nbytes + ebytes;
data = malloc(3 + len);
if (!data) {
syslog(LOG_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
i = 0;
data[i++] = '\x99';
data[i++] = (len >> 8);
data[i++] = len;
data[i++] = '\x04';
data[i++] = '\00';
data[i++] = '\00';
data[i++] = '\00';
data[i++] = '\00';
data[i++] = '\02';
data[i++] = (nbits >> 8);
data[i++] = nbits;
BN_bn2bin(key->n, &(data[i]));
i += nbytes;
data[i++] = (ebits >> 8);
data[i++] = ebits;
BN_bn2bin(key->e, &(data[i]));
i += ebytes;
SHA1(data, len + 3, hash);
to_hex(sig, (char *)hash, ECRYPTFS_SIG_SIZE);
sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
out:
free(data);
free(hash);
return rc;
}
static int
ecryptfs_openssl_mkdir_recursive(char *dir, mode_t mode)
{
char *temp = NULL;
char *parent = NULL;
int rc = 0;
if (!strcmp(dir, ".") || !strcmp(dir, "/"))
goto out;
temp = strdup(dir);
if (temp == NULL) {
rc = -ENOMEM;
goto out;
}
parent = dirname(temp);
rc = ecryptfs_openssl_mkdir_recursive(parent, mode);
if (rc)
goto out;
if (mkdir(dir, mode) == -1) {
if (errno != EEXIST) {
rc = -errno;
goto out;
}
}
rc = 0;
out:
free(temp);
return rc;
}
static int
ecryptfs_openssl_write_key_to_file(RSA *rsa, char *filename, char *passphrase)
{
char *tmp_filename;
char *openssl_dir;
BIO *out;
const EVP_CIPHER *enc = EVP_aes_256_cbc();
int rc = 0;
tmp_filename = strdup(filename);
if (tmp_filename == NULL) {
rc = -ENOMEM;
goto out;
}
openssl_dir = dirname(tmp_filename);
rc = ecryptfs_openssl_mkdir_recursive(openssl_dir, 0700);
if (rc) {
syslog(LOG_WARNING, "%s: Error attempting to mkdir [%s]; "
"rc = [%d]\n", __FUNCTION__, openssl_dir, rc);
}
if ((out = BIO_new(BIO_s_file())) == NULL) {
syslog(LOG_ERR, "Unable to create BIO for output\n");
rc= -EIO;
goto out;
}
if (BIO_write_filename(out, filename) <= 0) {
syslog(LOG_ERR, "Failed to open file for reading\n");
rc = -EIO;
goto out_free_bio;
}
if (!PEM_write_bio_RSAPrivateKey(out, rsa, enc, NULL, 0, NULL,
(void *)passphrase)) {
syslog(LOG_ERR, "Failed to write key to file\n");
rc = -EIO;
goto out_free_bio;
}
out_free_bio:
BIO_free_all(out);
out:
free(tmp_filename);
return rc;
}
/**
* ecryptfs_openssl_read_key
* @rsa: RSA key to allocate
* @blob: Key module data to use in finding the key
*/
static int ecryptfs_openssl_read_key(RSA **rsa, unsigned char *blob)
{
struct openssl_data *openssl_data = NULL;
BIO *in = NULL;
int rc;
CRYPTO_malloc_init();
ERR_load_crypto_strings();
OpenSSL_add_all_algorithms();
ENGINE_load_builtin_engines();
openssl_data = malloc(sizeof(struct openssl_data));
if (!openssl_data) {
syslog(LOG_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
ecryptfs_openssl_deserialize(openssl_data, blob);
if ((in = BIO_new(BIO_s_file())) == NULL) {
syslog(LOG_ERR, "Unable to create BIO for output\n");
rc = -EIO;
goto out;
}
if (BIO_read_filename(in, openssl_data->path) <= 0) {
syslog(LOG_ERR, "Unable to read filename [%s]\n",
openssl_data->path);
rc = -EIO;
goto out;
}
if ((*rsa = PEM_read_bio_RSAPrivateKey(in, NULL, NULL,
openssl_data->passphrase))
== NULL) {
syslog(LOG_ERR,
"%s: Unable to read private key from file [%s]\n",
__FUNCTION__, openssl_data->path);
rc = -ENOKEY;
goto out;
}
rc = 0;
out:
free(openssl_data);
BIO_free_all(in);
EVP_cleanup();
CRYPTO_cleanup_all_ex_data();
ERR_remove_state(0);
ERR_free_strings();
return rc;
}
int ecryptfs_openssl_get_key_sig(unsigned char *sig, unsigned char *blob)
{
RSA *rsa = NULL;
int rc;
if ((rc = ecryptfs_openssl_read_key(&rsa, blob))) {
syslog(LOG_ERR, "Error attempting to read RSA key from file;"
" rc = [%d]\n", rc);
goto out;
}
if ((rc = ecryptfs_openssl_generate_signature((char *)sig, rsa))) {
syslog(LOG_ERR, "%s: Error attempting to generate key "
"signature; rc = [%d]\n", __FUNCTION__, rc);
goto out_free_rsa;
}
out_free_rsa:
RSA_free(rsa);
out:
return rc;
}
/**
* ecryptfs_openssl_generate_key
* @filename: File into which to write the newly generated key
*
* Generate a new key and write it out to a file.
*/
static int ecryptfs_openssl_generate_key(struct openssl_data *openssl_data)
{
RSA *rsa;
int rc = 0;
if ((rsa = RSA_generate_key(1024, 65537, NULL, NULL)) == NULL) {
syslog(LOG_ERR, "Error generating new RSA key\n");
rc = -ENOMEM;
goto out;
}
if ((rc = ecryptfs_openssl_write_key_to_file(
rsa, openssl_data->path, openssl_data->passphrase))) {
syslog(LOG_ERR, "Error writing key to file; rc = [%d]\n", rc);
rc = -EIO;
goto out_free_rsa;
}
out_free_rsa:
RSA_free(rsa);
out:
return rc;
}
/**
* ecryptfs_openssl_encrypt
* @to: Where to write encrypted data
* @size: Number of bytes to encrypt
* @from: Data to encrypt
* @blob: Arbitrary blob specific to this key module
*
* Encrypt @size bytes of data in @from, writing the encrypted data
* into @to, using @blob as the parameters for the
* encryption.
*/
static int ecryptfs_openssl_encrypt(char *to, size_t *to_size, char *from,
size_t from_size, unsigned char *blob,
int blob_type)
{
RSA *rsa = NULL;
int rc;
(*to_size) = 0;
if ((rc = ecryptfs_openssl_read_key(&rsa, blob))) {
rc = -(int)ERR_get_error();
syslog(LOG_ERR, "Error attempting to read RSA key from file;"
" rc = [%d]\n", rc);
goto out;
}
(*to_size) = RSA_size(rsa);
if (to) {
if ((rc = RSA_public_encrypt(from_size, (unsigned char *)from,
(unsigned char *)to, rsa,
RSA_PKCS1_OAEP_PADDING)) == -1) {
rc = -(int)ERR_get_error();
syslog(LOG_ERR, "Error attempting to perform RSA "
"public key encryption; rc = [%d]\n", rc);
goto out_free_rsa;
} else {
(*to_size) = rc;
rc = 0;
}
}
out_free_rsa:
RSA_free(rsa);
out:
return rc;
}
/**
* ecryptfs_openssl_dencrypt
* @from: Data to decrypt
* @to: Where to write decrypted data
* @decrypted_key_size: Number of bytes decrypted
* @blob: Arbitrary blob specific to this key module
*
* Decrypt data in @from, writing the decrypted data into @to, using
* @blob as the parameters for the encryption.
*/
static int ecryptfs_openssl_decrypt(char *to, size_t *to_size, char *from,
size_t from_size, unsigned char *blob,
int blob_type)
{
RSA *rsa = NULL;
int rc;
(*to_size) = 0;
if ((rc = ecryptfs_openssl_read_key(&rsa, blob))) {
rc = -(int)ERR_get_error();
syslog(LOG_ERR, "Error attempting to read RSA key from file;"
" rc = [%d]\n", rc);
goto out;
}
(*to_size) = RSA_size(rsa);
if (to) {
if ((rc = RSA_private_decrypt(from_size, (unsigned char *)from,
(unsigned char *)to, rsa,
RSA_PKCS1_OAEP_PADDING)) == -1) {
rc = -(int)ERR_get_error();
syslog(LOG_ERR, "Error attempting to perform RSA "
"public key decryption; rc = [%d]\n", rc);
goto out_free_rsa;
} else {
(*to_size) = rc;
rc = 0;
}
}
out_free_rsa:
RSA_free(rsa);
out:
return rc;
}
int ecryptfs_openssl_init_from_param_vals(struct openssl_data *, struct key_mod_param_val *, uint32_t);
static int ecryptfs_openssl_get_blob(unsigned char *blob, size_t *blob_size,
struct key_mod_param_val *param_vals,
uint32_t num_param_vals)
{
struct openssl_data openssl_data;
int rc = 0;
if ((rc = ecryptfs_openssl_init_from_param_vals(&openssl_data,
param_vals,
num_param_vals))) {
syslog(LOG_ERR, "Error parsing parameter values; rc = [%d]\n",
rc);
goto out;
}
if (blob == NULL) {
if ((rc = ecryptfs_openssl_serialize(NULL, blob_size,
&openssl_data))) {
syslog(LOG_ERR,
"Error serializing openssl; rc = [%d]\n", rc);
goto out;
}
goto out;
}
if ((rc = ecryptfs_openssl_serialize(blob, blob_size, &openssl_data))) {
syslog(LOG_ERR, "Error serializing openssl; rc = [%d]\n", rc);
goto out;
}
out:
return rc;
}
static int tf_ssl_keyfile(struct ecryptfs_ctx *ctx, struct param_node *node,
struct val_node **mnt_params, void **foo)
{
struct ecryptfs_subgraph_ctx *subgraph_ctx;
int rc;
subgraph_ctx = (struct ecryptfs_subgraph_ctx *)(*foo);
if ((rc = asprintf(&subgraph_ctx->openssl_data.path, "%s", node->val))
== -1) {
rc = -ENOMEM;
goto out;
}
rc = DEFAULT_TOK;
free(node->val);
node->val = NULL;
out:
return rc;
}
static int
ecryptfs_openssl_process_key(struct ecryptfs_subgraph_ctx *subgraph_ctx,
struct val_node **mnt_params)
{
size_t blob_size;
char *sig_mnt_opt;
char sig[ECRYPTFS_SIG_SIZE_HEX + 1];
int rc;
if ((rc = ecryptfs_openssl_serialize(NULL, &blob_size,
&subgraph_ctx->openssl_data))) {
syslog(LOG_ERR, "Error serializing openssl; rc = [%d]\n", rc);
rc = MOUNT_ERROR;
goto out;
}
if (blob_size == 0) {
syslog(LOG_ERR, "Error serializing openssl\n");
rc = MOUNT_ERROR;
goto out;
}
if ((subgraph_ctx->key_mod->blob = malloc(blob_size)) == NULL) {
syslog(LOG_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
if ((rc = ecryptfs_openssl_serialize((unsigned char *)
subgraph_ctx->key_mod->blob,
&subgraph_ctx->key_mod->blob_size,
&subgraph_ctx->openssl_data))) {
syslog(LOG_ERR, "Error serializing openssl; rc = [%d]\n", rc);
rc = MOUNT_ERROR;
goto out;
}
if (subgraph_ctx->key_mod->blob_size != blob_size) {
syslog(LOG_ERR, "%s: Internal error\n", __FUNCTION__);
exit(1);
}
if ((rc = ecryptfs_add_key_module_key_to_keyring(
sig, subgraph_ctx->key_mod)) < 0) {
syslog(LOG_ERR, "Error attempting to add key to keyring for "
"key module [%s]; rc = [%d]\n",
subgraph_ctx->key_mod->alias, rc);
goto out;
}
if ((rc = asprintf(&sig_mnt_opt, "ecryptfs_sig=%s", sig)) == -1) {
rc = -ENOMEM;
goto out;
}
rc = stack_push(mnt_params, sig_mnt_opt);
out:
return rc;
}
static int limit_key_size(struct val_node **params,
struct ecryptfs_subgraph_ctx *subgraph_ctx)
{
char *buf;
int rc;
RSA *rsa = NULL;
if ((rc=ecryptfs_openssl_read_key(&rsa,
(unsigned char *)subgraph_ctx->key_mod->blob)))
return rc;
/* 41 is for padding and 3 are for additional data send from
* kernel (1 for cipher type and 2 for checksum */
if ((rc = asprintf(&buf, "max_key_bytes=%d",
RSA_size(rsa)-41-3)) == -1) {
rc = -ENOMEM;
goto out;
}
rc = stack_push(params, buf);
out:
RSA_free(rsa);
return rc;
}
/**
*
*
*/
static int tf_ssl_passwd(struct ecryptfs_ctx *ctx, struct param_node *node,
struct val_node **mnt_params, void **foo)
{
struct ecryptfs_subgraph_ctx *subgraph_ctx;
int rc;
if (ecryptfs_verbosity)
syslog(LOG_INFO, "%s: Called w/ node->val = [%s]\n",
__FUNCTION__, node->val);
subgraph_ctx = (struct ecryptfs_subgraph_ctx *)(*foo);
if ((rc = asprintf(&subgraph_ctx->openssl_data.passphrase, "%s",
node->val)) == -1) {
rc = -ENOMEM;
goto out;
}
free(node->val);
node->val = NULL;
if ((rc = ecryptfs_openssl_process_key(subgraph_ctx, mnt_params))) {
syslog(LOG_ERR, "Error processing OpenSSL key; rc = [%d]", rc);
goto out;
}
limit_key_size(mnt_params, subgraph_ctx);
ecryptfs_openssl_destroy_subgraph_ctx(subgraph_ctx);
free(subgraph_ctx);
(*foo) = NULL;
rc = DEFAULT_TOK;
out:
return rc;
}
static int tf_ssl_passwd_file(struct ecryptfs_ctx *ctx, struct param_node *node,
struct val_node **mnt_params, void **foo)
{
int rc = 0;
int fd;
struct ecryptfs_subgraph_ctx *subgraph_ctx;
struct ecryptfs_name_val_pair file_head = { 0, };
struct ecryptfs_name_val_pair *walker = NULL;
syslog(LOG_INFO, "%s: Called\n", __FUNCTION__);
subgraph_ctx = (struct ecryptfs_subgraph_ctx *)(*foo);
if (strcmp(node->mnt_opt_names[0], "openssl_passwd_file") == 0)
fd = open(node->val, O_RDONLY);
else if (strcmp(node->mnt_opt_names[0], "openssl_passwd_fd") == 0)
fd = strtol(node->val, NULL, 0);
else {
rc = MOUNT_ERROR;
goto out;
}
if (fd == -1) {
syslog(LOG_ERR, "%s: Error attempting to open file\n",
__FUNCTION__);
rc = MOUNT_ERROR;
goto out;
}
rc = parse_options_file(fd, &file_head);
close(fd);
if (rc) {
syslog(LOG_ERR, "%s: Error attempting to parse options out "
"of file\n", __FUNCTION__);
goto out;
}
walker = file_head.next;
while (walker) {
if (strcmp(walker->name, "openssl_passwd") == 0) {
if ((rc =
asprintf(&subgraph_ctx->openssl_data.passphrase,
"%s", walker->value)) == -1) {
rc = -ENOMEM;
goto out;
}
break;
}
walker = walker->next;
}
if (!walker) {
syslog(LOG_ERR, "%s: No openssl_passwd option found in file\n",
__FUNCTION__);
rc = MOUNT_ERROR;
goto out;
}
walker = NULL;
if ((rc = ecryptfs_openssl_process_key(subgraph_ctx, mnt_params))) {
syslog(LOG_ERR, "Error processing OpenSSL key; rc = [%d]", rc);
goto out;
}
limit_key_size(mnt_params, subgraph_ctx);
ecryptfs_openssl_destroy_subgraph_ctx(subgraph_ctx);
free(subgraph_ctx);
(*foo) = NULL;
rc = DEFAULT_TOK;
out:
free_name_val_pairs(file_head.next);
free(file_head.name);
free(file_head.value);
free(node->val);
node->val = NULL;
syslog(LOG_INFO, "%s: Exiting\n", __FUNCTION__);
return rc;
}
static int tf_ssl_passwd_fd(struct ecryptfs_ctx *ctx, struct param_node *node,
struct val_node **mnt_params, void **foo)
{
return ENOSYS;
}
static int tf_ecryptfs_openssl_gen_key_param_node_keyfile(
struct ecryptfs_ctx *ctx, struct param_node *node,
struct val_node **mnt_params, void **foo)
{
struct ecryptfs_subgraph_ctx *subgraph_ctx;
int rc = DEFAULT_TOK;
subgraph_ctx = (struct ecryptfs_subgraph_ctx *)(*foo);
if ((rc = asprintf(&subgraph_ctx->openssl_data.path, "%s",
node->val)) == -1) {
rc = -ENOMEM;
goto out;
}
rc = DEFAULT_TOK;
out:
return rc;
}
static int tf_ecryptfs_openssl_gen_key_param_node_passphrase(
struct ecryptfs_ctx *ctx, struct param_node *node,
struct val_node **mnt_params, void **foo)
{
struct ecryptfs_subgraph_ctx *subgraph_ctx;
int rc = DEFAULT_TOK;
subgraph_ctx = (struct ecryptfs_subgraph_ctx *)(*foo);
if ((rc = asprintf(&subgraph_ctx->openssl_data.passphrase, "%s",
node->val)) == -1) {
rc = -ENOMEM;
goto out;
}
if ((rc = ecryptfs_openssl_generate_key(&subgraph_ctx->openssl_data))) {
syslog(LOG_ERR, "%s: Error generating key to file [%s]; "
"rc = [%d]\n", __FUNCTION__,
subgraph_ctx->openssl_data.path, rc);
rc = MOUNT_ERROR;
goto out;
}
out:
return rc;
}
#define ECRYPTFS_OPENSSL_GEN_KEY_PARAM_NODE_KEYFILE 0
#define ECRYPTFS_OPENSSL_GEN_KEY_PARAM_NODE_PASSPHRASE 1
static struct param_node ecryptfs_openssl_gen_key_param_nodes[] = {
{.num_mnt_opt_names = 1,
.mnt_opt_names = {"keyfile"},
.prompt = "SSL key file path",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.suggested_val = NULL,
.flags = ECRYPTFS_PARAM_FLAG_ECHO_INPUT,
.num_transitions = 1,
.tl = {{.val = "default",
.pretty_val = "",
.next_token = &ecryptfs_openssl_gen_key_param_nodes[
ECRYPTFS_OPENSSL_GEN_KEY_PARAM_NODE_PASSPHRASE],
.trans_func = &tf_ecryptfs_openssl_gen_key_param_node_keyfile}}},
{.num_mnt_opt_names = 1,
.mnt_opt_names = {"passphrase"},
.prompt = "Passphrase",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.suggested_val = NULL,
.flags = ECRYPTFS_PARAM_FLAG_MASK_OUTPUT | VERIFY_VALUE,
.num_transitions = 1,
.tl = {{.val = NULL,
.pretty_val = NULL,
.next_token = NULL,
.trans_func =
&tf_ecryptfs_openssl_gen_key_param_node_passphrase}}}
};
#define SSL_KEY_SOURCE_TOK 0
#define SSL_KEY_FILE_TOK 1
#define SSL_PASSPHRASE_METHOD_TOK 2
#define SSL_USER_PROVIDED_PASSWD_TOK 3
#define SSL_FILE_PASSWD_TOK 4
#define SSL_FD_PASSWD_TOK 5
static struct param_node ssl_param_nodes[] = {
{.num_mnt_opt_names = 2,
.mnt_opt_names = {"openssl_keysource", "keysource"},
.prompt = "Key source",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = "keyfile",
.flags = ECRYPTFS_PARAM_FLAG_NO_VALUE,
.num_transitions = 1,
.tl = {{.val = "default",
.pretty_val = "OpenSSL Key File",
.next_token = &ssl_param_nodes[SSL_KEY_FILE_TOK],
.trans_func = NULL}}}, /* Add more options here later */
{.num_mnt_opt_names = 2,
.mnt_opt_names = {"openssl_keyfile", "keyfile"},
.prompt = "PEM key file",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.flags = ECRYPTFS_PARAM_FLAG_ECHO_INPUT,
.num_transitions = 1,
.tl = {{.val = "default", /* The decision graph code will
* just follow a "default"
* transition node */
.pretty_val = "Passphrase Method",
.next_token = &ssl_param_nodes[SSL_PASSPHRASE_METHOD_TOK],
.trans_func = tf_ssl_keyfile}}},
{.num_mnt_opt_names = 2,
.mnt_opt_names = {"openssl_passwd_specification_method",
"passwd_specification_method"},
.prompt = "Method of providing the passphrase",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.suggested_val = "openssl_passwd",
/* An implicit transition takes place if one of the key
* module parameters that are the target of one of the
* transition nodes already exists in the provided parameter
* list. */
.flags = (DISPLAY_TRANSITION_NODE_VALS | ECRYPTFS_DISPLAY_PRETTY_VALS
| ECRYPTFS_PARAM_FLAG_ECHO_INPUT
| ECRYPTFS_ALLOW_IMPLICIT_TRANSITION),
.num_transitions = 3,
.tl = {{.val = "openssl_passwd",
.pretty_val = "openssl_passwd: Enter on Console",
.next_token = &ssl_param_nodes[SSL_USER_PROVIDED_PASSWD_TOK],
.trans_func = NULL},
{.val = "openssl_passwd_file",
.pretty_val = "openssl_passwd_file: File Containing Passphrase",
.next_token = &ssl_param_nodes[SSL_FILE_PASSWD_TOK],
.trans_func = NULL},
{.val = "openssl_passwd_fd",
.pretty_val = ("openssl_passwd_fd: File Descriptor for File "
"Containing Passphrase"),
.next_token = &ssl_param_nodes[SSL_FD_PASSWD_TOK],
.trans_func = NULL}}},
{.num_mnt_opt_names = 2,
.mnt_opt_names = {"openssl_passwd", "passwd"},
.prompt = "Passphrase",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.flags = STDIN_REQUIRED | ECRYPTFS_PARAM_FLAG_MASK_OUTPUT,
.num_transitions = 1,
.tl = {{.val = NULL,
.pretty_val = NULL,
.next_token = NULL,
.trans_func = tf_ssl_passwd}}},
{.num_mnt_opt_names = 2,
.mnt_opt_names = {"openssl_passwd_file", "passwd_file"},
.prompt = "Passphrase File",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.flags = STDIN_REQUIRED | ECRYPTFS_PARAM_FLAG_ECHO_INPUT
| ECRYPTFS_NONEMPTY_VALUE_REQUIRED,
.num_transitions = 1,
.tl = {{.val = NULL,
.pretty_val = NULL,
.next_token = NULL,
.trans_func = tf_ssl_passwd_file}}},
{.num_mnt_opt_names = 2,
.mnt_opt_names = {"openssl_passwd_fd", "passwd_fd"},
.prompt = "Passphrase File Descriptor",
.val_type = VAL_STR,
.val = NULL,
.display_opts = NULL,
.default_val = NULL,
.flags = STDIN_REQUIRED | ECRYPTFS_PARAM_FLAG_ECHO_INPUT
| ECRYPTFS_NONEMPTY_VALUE_REQUIRED,
.num_transitions = 1,
.tl = {{.val = NULL,
.pretty_val = NULL,
.next_token = NULL,
.trans_func = tf_ssl_passwd_fd}}}
};
/**
* tf_openssl_enter
* @ctx: The current applicable libecryptfs context struct
* @node: The param_node from which we are transitioning
* @head: The head of the name/value pair list that is being
* constructed as the decision graph is being traversed
* @foo: Arbitrary state information for the current subgraph
*
* Each transition from one node in the decision graph to another node
* can have a function executed on the transition event. A transition
* into any given subgraph may require certain housekeeping and
* initialization functions to occur.
*
* The decision graph engine forwards along an arbitrary data
* structure among the nodes of any subgraph. The logic in the
* subgraph can use that data structure to access and maintain
* arbitrary status information that is unique to the function of that
* subgraph.
*/
static int tf_openssl_enter(struct ecryptfs_ctx *ctx,
struct param_node *param_node,
struct val_node **mnt_params, void **foo)
{
struct ecryptfs_subgraph_ctx *subgraph_ctx;
int rc;
if ((subgraph_ctx = malloc(sizeof(struct ecryptfs_subgraph_ctx)))
== NULL) {
rc = -ENOMEM;
goto out;
}
memset(subgraph_ctx, 0, sizeof(struct ecryptfs_subgraph_ctx));
if ((rc = ecryptfs_find_key_mod(&subgraph_ctx->key_mod, ctx,
param_node->val))) {
syslog(LOG_ERR, "%s: Cannot find key_mod for param_node with "
"val = [%s]\n", __FUNCTION__, param_node->val);
free(subgraph_ctx);
goto out;
}
(*foo) = (void *)subgraph_ctx;
out:
return rc;
}
struct transition_node openssl_transition = {
.val = "openssl",
.pretty_val = "OpenSSL module",
.next_token = &(ssl_param_nodes[SSL_KEY_SOURCE_TOK]),
.trans_func = tf_openssl_enter
};
static int ecryptfs_openssl_get_param_subgraph_trans_node(
struct transition_node **trans, uint32_t version)
{
if ((version & ECRYPTFS_VERSIONING_PUBKEY) == 0)
return -1;
(*trans) = &openssl_transition;
return 0;
}
struct transition_node openssl_gen_key_transition = {
.val = "openssl",
.pretty_val = "OpenSSL module",
.next_token = &(ecryptfs_openssl_gen_key_param_nodes[
ECRYPTFS_OPENSSL_GEN_KEY_PARAM_NODE_KEYFILE]),
.trans_func = tf_openssl_enter
};
static int ecryptfs_openssl_get_gen_key_param_subgraph_trans_node(
struct transition_node **trans, uint32_t version)
{
if ((version & ECRYPTFS_VERSIONING_PUBKEY) == 0)
return -1;
(*trans) = &openssl_gen_key_transition;
return 0;
}
int ecryptfs_openssl_finalize(void)
{
return 0;
}
static int ecryptfs_openssl_init(char **alias)
{
uid_t id;
struct passwd *pw;
struct param_node *gen_key_keyfile_param_node =
&ecryptfs_openssl_gen_key_param_nodes[
ECRYPTFS_OPENSSL_GEN_KEY_PARAM_NODE_KEYFILE];
int rc = 0;
if (asprintf(alias, "openssl") == -1) {
rc = -ENOMEM;
syslog(LOG_ERR, "Out of memory\n");
goto out;
}
id = getuid();
pw = getpwuid(id);
if (!pw) {
rc = -EIO;
goto out;
}
if ((rc = asprintf(&ssl_param_nodes[SSL_KEY_FILE_TOK].suggested_val,
"%s/.ecryptfs/pki/openssl/key.pem",
pw->pw_dir)) == -1) {
rc = -ENOMEM;
goto out;
}
if ((rc = asprintf(&gen_key_keyfile_param_node->suggested_val,
"%s/.ecryptfs/pki/openssl/key.pem",
pw->pw_dir)) == -1) {
rc = -ENOMEM;
goto out;
}
rc = 0;
out:
return rc;
}
static struct ecryptfs_key_mod_ops ecryptfs_openssl_ops = {
&ecryptfs_openssl_init,
NULL,
&ecryptfs_openssl_get_gen_key_param_subgraph_trans_node,
NULL,
&ecryptfs_openssl_get_param_subgraph_trans_node,
&ecryptfs_openssl_get_blob,
NULL,
&ecryptfs_openssl_get_key_sig,
NULL,
&ecryptfs_openssl_encrypt,
&ecryptfs_openssl_decrypt,
NULL,
&ecryptfs_openssl_finalize
};
struct ecryptfs_key_mod_ops *get_key_mod_ops(void)
{
return &ecryptfs_openssl_ops;
}
|