1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
|
#ifndef VALUE_H_20191119_
#define VALUE_H_20191119_
#include "API.h"
#include <array>
#include <cinttypes>
#include <cstdint>
#include <cstring>
#include <iomanip>
#include <sstream>
#include <QString>
#include <QVariant>
#ifdef _MSC_VER
extern "C" EDB_EXPORT void __fastcall long_double_to_double(const void *src, double *dest);
EDB_EXPORT void convert_real64_to_real80(const void *src, void *dst);
#endif
namespace edb {
namespace v1 {
EDB_EXPORT bool debuggeeIs32Bit();
}
namespace detail {
template <class Integer>
using IsInteger = typename std::enable_if<std::is_integral<Integer>::value>::type;
template <class T1, class T2>
using PromoteType = typename std::conditional<
sizeof(T1) >= sizeof(T2),
typename std::make_unsigned<T1>::type,
typename std::make_unsigned<T2>::type>::type;
template <size_t N>
class value_type_large {
public:
using T = uint64_t[N / 64];
public:
// all defaulted to help ensure that this is a trivially-copyable type
value_type_large() = default;
value_type_large(const value_type_large &) = default;
value_type_large &operator=(const value_type_large &) = default;
value_type_large(value_type_large &&) = default;
value_type_large &operator=(value_type_large &&) = default;
~value_type_large() = default;
public:
template <class U, class = typename std::enable_if<!std::is_arithmetic<U>::value>::type>
explicit value_type_large(const U &data, size_t offset = 0) {
static_assert(sizeof(data) >= sizeof(T), "value_type can only be constructed from large enough variable");
static_assert(std::is_trivially_copyable<U>::value, "value_type can only be constructed from trivially copiable data");
Q_ASSERT(sizeof(data) - offset >= sizeof(T)); // check bounds, this can't be done at compile time
auto dataStart = reinterpret_cast<const char *>(&data);
std::memcpy(&value_, dataStart + offset, sizeof(value_));
}
public:
template <class U>
void load(const U &n) {
static_assert(sizeof(T) >= sizeof(n), "Value to load is too large.");
std::memcpy(&value_, &n, sizeof(n));
}
public:
bool operator==(const value_type_large &rhs) const { return std::memcmp(value_, rhs.value_, sizeof(T)) == 0; }
bool operator!=(const value_type_large &rhs) const { return std::memcmp(value_, rhs.value_, sizeof(T)) != 0; }
public:
QString toHexString() const {
char buf[sizeof(T) * 2 + 1];
char *p = buf;
for (auto it = std::rbegin(value_); it != std::rend(value_); ++it) {
p += sprintf(p, "%016" PRIx64, *it);
}
return QString::fromLatin1(buf);
}
public:
template <class U>
static value_type_large fromZeroExtended(const U &data) {
static_assert(sizeof(data) <= sizeof(T), "It doesn't make sense to expand a larger type into a smaller type");
value_type_large created;
auto dataStart = reinterpret_cast<const char *>(&data);
auto target = reinterpret_cast<char *>(&created.value_);
std::memcpy(target, dataStart, sizeof(data));
std::memset(target + sizeof(data), 0, sizeof(T) - sizeof(data));
return created;
}
private:
T value_ = {};
};
template <class T>
class value_type {
template <class U>
friend class value_type;
public:
using InnerValueType = T;
public:
// all defaulted to help ensure that this is a trivially-copyable type
value_type() = default;
value_type(const value_type &) = default;
value_type &operator=(const value_type &) = default;
value_type(value_type &&) = default;
value_type &operator=(value_type &&) = default;
~value_type() = default;
public:
template <class Integer, class = IsInteger<Integer>>
value_type(Integer n)
: value_(n) {
// NOTE(eteran): this is allowed to truncate like assigning a uint64_t to a uint32_t
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator=(const Integer &rhs) {
value_ = rhs;
// NOTE(eteran): this is allowed to truncate like assigning a uint64_t to a uint32_t
return *this;
}
public:
template <class U>
explicit value_type(const value_type<U> &other)
: value_(other.value_) {
// NOTE(eteran): this is allowed to truncate like assigning a uint64_t to a uint32_t
}
template <class U>
value_type &operator=(const value_type<U> &rhs) {
value_ = rhs.value_;
// NOTE(eteran): this is allowed to truncate like assigning a uint64_t to a uint32_t
return *this;
}
public:
template <class U, class = typename std::enable_if<!std::is_arithmetic<U>::value>::type>
explicit value_type(const U &data, size_t offset = 0) {
static_assert(sizeof(data) >= sizeof(T), "value_type can only be constructed from large enough variable");
static_assert(std::is_trivially_copyable<U>::value, "value_type can only be constructed from trivially copiable data");
Q_ASSERT(sizeof(data) - offset >= sizeof(T)); // check bounds, this can't be done at compile time
auto dataStart = reinterpret_cast<const char *>(&data);
std::memcpy(&value_, dataStart + offset, sizeof(value_));
}
public:
template <class U>
void load(const U &n) {
static_assert(sizeof(T) >= sizeof(n), "Value to load is too large.");
std::memcpy(&value_, &n, sizeof(n));
}
public:
static value_type fromString(const QString &str, bool *ok = nullptr, int base = 10, bool isSigned = false) {
const qulonglong v = isSigned ? static_cast<qulonglong>(str.toLongLong(ok, base)) : str.toULongLong(ok, base);
if (ok && !*ok) {
return 0;
}
// Check that the result fits into the underlying type
value_type result(v);
if (result == v) {
return result;
}
if (ok) {
*ok = false;
}
return 0;
}
static value_type fromHexString(const QString &str, bool *ok = nullptr) {
return fromString(str, ok, 16);
}
static value_type fromSignedString(const QString &str, bool *ok = nullptr) {
return fromString(str, ok, 10, true);
}
static value_type fromCString(const QString &str, bool *ok = nullptr) {
return fromString(str, ok, 0);
}
template <class U>
static value_type fromZeroExtended(const U &data) {
value_type created;
static_assert(sizeof(data) <= sizeof(T), "It doesn't make sense to expand a larger type into a smaller type");
auto dataStart = reinterpret_cast<const char *>(&data);
auto target = reinterpret_cast<char *>(&created.value_);
std::memcpy(target, dataStart, sizeof(data));
std::memset(target + sizeof(data), 0, sizeof(T) - sizeof(data));
return created;
}
public:
void swap(value_type &other) {
using std::swap;
swap(value_, other.value_);
}
public:
bool negative() const {
return typename std::make_signed<T>::type(value_) < 0;
}
public:
explicit operator bool() const { return value_ != 0; }
bool operator!() const { return !value_; }
operator T() const { return value_; }
T toUint() const { return value_; }
T &asUint() { return value_; }
public:
value_type operator++(int) {
T v(value_);
++value_;
return v;
}
value_type &operator++() {
++value_;
return *this;
}
value_type operator--(int) {
T v(value_);
--value_;
return v;
}
value_type &operator--() {
--value_;
return *this;
}
public:
template <class U>
value_type &operator+=(const value_type<U> &rhs) {
value_ += rhs.value_;
return *this;
}
template <class U>
value_type &operator-=(const value_type<U> &rhs) {
value_ -= rhs.value_;
return *this;
}
template <class U>
value_type &operator*=(const value_type<U> &rhs) {
value_ *= rhs.value_;
return *this;
}
template <class U>
value_type &operator/=(const value_type<U> &rhs) {
value_ /= rhs.value_;
return *this;
}
template <class U>
value_type &operator%=(const value_type<U> &rhs) {
value_ %= rhs.value_;
return *this;
}
public:
template <class U>
value_type &operator&=(const value_type<U> &rhs) {
value_ &= rhs.value_;
return *this;
}
template <class U>
value_type &operator|=(const value_type<U> &rhs) {
value_ |= rhs.value_;
return *this;
}
template <class U>
value_type &operator^=(const value_type<U> &rhs) {
value_ ^= rhs.value_;
return *this;
}
template <class U>
value_type &operator>>=(const value_type<U> &rhs) {
value_ >>= rhs.value_;
return *this;
}
template <class U>
value_type &operator<<=(const value_type<U> &rhs) {
value_ <<= rhs.value_;
return *this;
}
public:
template <class Integer, class = IsInteger<Integer>>
value_type &operator+=(Integer n) {
value_ += n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator-=(Integer n) {
value_ -= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator*=(Integer n) {
value_ *= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator/=(Integer n) {
value_ /= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator%=(Integer n) {
value_ %= n;
return *this;
}
public:
template <class Integer, class = IsInteger<Integer>>
value_type &operator&=(Integer n) {
value_ &= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator|=(Integer n) {
value_ |= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator^=(Integer n) {
value_ ^= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator>>=(Integer n) {
value_ >>= n;
return *this;
}
template <class Integer, class = IsInteger<Integer>>
value_type &operator<<=(Integer n) {
value_ <<= n;
return *this;
}
public:
QString toPointerString(bool createdFromNativePointer = true) const {
if (edb::v1::debuggeeIs32Bit()) {
return "0x" + value_type<uint32_t>(value_).toHexString();
} else {
if (!createdFromNativePointer) { // then we don't know value of upper dword
return "0x????????" + value_type<uint32_t>(value_).toHexString();
} else {
return "0x" + toHexString();
}
}
}
QString toHexString() const {
std::ostringstream ss;
ss << std::setw(sizeof(value_) * 2) << std::setfill('0') << std::hex << +value_; // + to prevent printing uint8_t as a character
return QString::fromStdString(ss.str());
}
QString unsignedToString() const {
return toString();
}
QString signedToString() const {
return QString("%1").arg(typename std::make_signed<T>::type(value_));
}
QString toString() const {
return QString("%1").arg(value_);
}
QVariant toQVariant() const {
return QVariant::fromValue(value_);
}
public:
value_type signExtended(size_t valueLength) const {
value_type result(value_);
if (valueLength == sizeof(value_)) {
return result;
}
// if the sign bit is set
if (value_ & (1ull << (valueLength * 8 - 1))) {
// start with all bits set
result.value_ = -1ll;
// overwrite the lower <valueLength> bytes with the original value
std::memcpy(&result.value_, &value_, valueLength);
}
return result;
}
public:
void normalize() {
if (edb::v1::debuggeeIs32Bit()) {
value_ &= 0xffffffffull;
}
}
public:
T value_ = {};
};
// iostream operators
template <class T>
std::istream &operator>>(std::istream &os, value_type<T> &val) {
os >> val.asUint();
return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, value_type<T> &val) {
os << val.toUint();
return os;
}
// operators for value_type, Integer
template <class T, class Integer, class = IsInteger<Integer>>
bool operator==(const value_type<T> &lhs, Integer rhs) {
using U = typename std::make_unsigned<Integer>::type;
return lhs.value_ == static_cast<U>(rhs);
}
template <class T, class Integer, class = IsInteger<Integer>>
bool operator!=(const value_type<T> &lhs, Integer rhs) {
using U = typename std::make_unsigned<Integer>::type;
return lhs.value_ != static_cast<U>(rhs);
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator+(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r += rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator-(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r -= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator*(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r *= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator/(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r /= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator%(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r %= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator&(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r &= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator|(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r |= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator^(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r ^= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator>>(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r >>= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator<<(const value_type<T> &lhs, Integer rhs) -> value_type<T> {
value_type<T> r(lhs);
r <<= rhs;
return r;
}
// operators for Integer, value_type
template <class T, class Integer, class = IsInteger<Integer>>
bool operator==(Integer lhs, const value_type<T> &rhs) {
return rhs == lhs;
}
template <class T, class Integer, class = IsInteger<Integer>>
bool operator!=(Integer lhs, const value_type<T> &rhs) {
return rhs != lhs;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator+(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r += rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator-(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r -= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator*(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r *= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator/(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r /= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator%(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r %= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator&(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r &= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator|(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r |= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator^(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r ^= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator>>(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r >>= rhs;
return r;
}
template <class T, class Integer, class = IsInteger<Integer>>
auto operator<<(Integer lhs, const value_type<T> &rhs) -> value_type<PromoteType<T, Integer>> {
using U = value_type<PromoteType<T, Integer>>;
value_type<U> r(lhs);
r <<= rhs;
return r;
}
// operators for value_type, value_type
template <class T1, class T2>
bool operator==(const value_type<T1> &lhs, const value_type<T2> &rhs) {
return lhs.value_ == rhs.value_;
}
template <class T1, class T2>
bool operator!=(const value_type<T1> &lhs, const value_type<T2> &rhs) {
return lhs.value_ != rhs.value_;
}
template <class T1, class T2>
auto operator+(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r += rhs;
return r;
}
template <class T1, class T2>
auto operator-(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r -= rhs;
return r;
}
template <class T1, class T2>
auto operator*(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r *= rhs;
return r;
}
template <class T1, class T2>
auto operator/(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r /= rhs;
return r;
}
template <class T1, class T2>
auto operator%(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r %= rhs;
return r;
}
template <class T1, class T2>
auto operator&(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r &= rhs;
return r;
}
template <class T1, class T2>
auto operator|(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r |= rhs;
return r;
}
template <class T1, class T2>
auto operator^(const value_type<T1> &lhs, const value_type<T2> &rhs) -> value_type<PromoteType<T1, T2>> {
using U = value_type<PromoteType<T1, T2>>;
value_type<U> r(lhs);
r ^= rhs;
return r;
}
struct value_type80 {
public:
using T = uint8_t[10];
public:
// all defaulted to help ensure that this is a trivially-copyable type
value_type80() = default;
value_type80(const value_type80 &) = default;
value_type80 &operator=(const value_type80 &) = default;
value_type80(value_type80 &&) = default;
value_type80 &operator=(value_type80 &&) = default;
~value_type80() = default;
public:
template <class U>
explicit value_type80(const U &data, size_t offset = 0) {
#ifdef _MSC_VER
if (std::is_same<U, long double>::value && sizeof(U) < sizeof(T)) {
T temp;
convert_real64_to_real80(&data, &temp);
Q_ASSERT(sizeof(temp) - offset >= sizeof(T)); // check bounds, this can't be done at compile time
auto dataStart = reinterpret_cast<const char *>(&temp);
std::memcpy(&value_, dataStart + offset, sizeof(value_));
return;
}
#else
static_assert(sizeof(data) >= sizeof(T), "ValueBase can only be constructed from large enough variable");
#endif
static_assert(std::is_trivially_copyable<U>::value, "ValueBase can only be constructed from trivially copiable data");
Q_ASSERT(sizeof(data) - offset >= sizeof(T)); // check bounds, this can't be done at compile time
auto dataStart = reinterpret_cast<const char *>(&data);
std::memcpy(&value_, dataStart + offset, sizeof(value_));
}
public:
bool negative() const {
return value_[9] & 0x80;
}
value_type<uint16_t> exponent() const {
value_type<uint16_t> e(value_, 8);
e &= 0x7fff;
return e;
}
value_type<uint64_t> mantissa() const {
value_type<uint64_t> m(value_, 0);
return m;
}
bool normalized() const {
return value_[7] & 0x80;
}
public:
long double toFloatValue() const {
#ifdef _MSC_VER
double d;
long_double_to_double(&value_, &d);
return d;
#else
long double float80val;
std::memcpy(&float80val, &value_, sizeof(value_));
return float80val;
#endif
}
public:
QString toHexString() const {
char buf[32];
snprintf(buf, sizeof(buf), "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
value_[9],
value_[8],
value_[7],
value_[6],
value_[5],
value_[4],
value_[3],
value_[2],
value_[1],
value_[0]);
return QString::fromLatin1(buf);
}
public:
bool operator==(const value_type80 &rhs) const { return std::memcmp(value_, rhs.value_, 10) == 0; }
bool operator!=(const value_type80 &rhs) const { return std::memcmp(value_, rhs.value_, 10) != 0; }
private:
T value_ = {};
};
static_assert(sizeof(value_type80) * 8 == 80, "value_type80 size is broken!");
}
// GPR on x86
using value8 = detail::value_type<uint8_t>;
using value16 = detail::value_type<uint16_t>;
using value32 = detail::value_type<uint32_t>;
// MMX/GPR(x86_64)
using value64 = detail::value_type<uint64_t>;
// We support registers and addresses of 64-bits
using address_t = value64;
using reg_t = value64;
// FPU
using value80 = detail::value_type80;
// SSE
using value128 = detail::value_type_large<128>;
// AVX
using value256 = detail::value_type_large<256>;
// AVX512
using value512 = detail::value_type_large<512>;
static_assert(std::is_standard_layout<value8>::value &&
std::is_standard_layout<value16>::value &&
std::is_standard_layout<value32>::value &&
std::is_standard_layout<value64>::value &&
std::is_standard_layout<value80>::value &&
std::is_standard_layout<value128>::value &&
std::is_standard_layout<value256>::value &&
std::is_standard_layout<value512>::value,
"Fixed-sized values are intended to have standard layout");
static_assert(std::is_trivially_copyable<value8>::value &&
std::is_trivially_copyable<value16>::value &&
std::is_trivially_copyable<value32>::value &&
std::is_trivially_copyable<value64>::value &&
std::is_trivially_copyable<value80>::value &&
std::is_trivially_copyable<value128>::value &&
std::is_trivially_copyable<value256>::value &&
std::is_trivially_copyable<value512>::value,
"Fixed-sized values are intended to be trivially copyable");
}
#endif
|