1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
/*
***************************************************************************
*
* Author: Teunis van Beelen
*
* Copyright (C) 2017 - 2019 Teunis van Beelen
*
* Email: teuniz@gmail.com
*
**************************************************************************
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
***************************************************************************
*
* Inspired by:
*
* - Subtraction Method For Powerline Interference Removing From ECG
* Chavdar Levkov, Georgy Mihov, Ratcho Ivanov, Ivan K. Daskalov
* Ivaylo Christov, Ivan Dotsinsky
*
* - Removal of power-line interference from the ECG: a review of the
* subtraction procedure
* Chavdar Levkov, Georgy Mihov, Ratcho Ivanov, Ivan Daskalov,
* Ivaylo Christov and Ivan Dotsinsky
*
* - Accuracy of 50 Hz interference subtraction from an electrocardiogram
* I. A, Dotsinsky I.K. Daskalov
*
* - Dynamic powerline interference subtraction from biosignals
* Ivaylo I. Christov
*
*
* The subtraction method extracts the powerline interference noise during a
* a linear region between two consecutive QRS complexes and stores it in a buffer.
* Buffersize equals one complete powerlinefrequency cycle (20 milli-Sec.).
* The reference noise from the buffer is used to subtract it from the signal outside
* the linear region i.e. during the QRS complex.
* This method only works correctly when the ratio of the samplefrequency and the
* powerline frequency is an integer multiple.
* In case they are synchronized, this method will remove also the harmonics of the
* powerline frequency. In that case extra notch-filters for the harmonics are
* not necessary. The advantage of this method is that it will not cause ringing
* in the waveform of the QRS complex (like notch-filters do).
*
***************************************************************************
*/
#include "plif_ecg_subtract_filter.h"
/*
*
* sf: samplefrequency (must be >= 500Hz and must be an integer multiple of the powerline frequency)
*
* pwlf: powerline frequency (must be set to 50Hz or 60Hz)
*
* lt: linear region threshold, MUST BE SET TO 5uV!
* used to detect linear region between two consecutive QRS complexes
*
*/
struct plif_subtract_filter_settings * plif_create_subtract_filter(int sf, int pwlf, double lt)
{
int i;
struct plif_subtract_filter_settings *st;
/* perform some sanity checks */
if(sf < 500) return NULL; /* we need at least the samplefrequency considered the "gold standard" */
if((pwlf != 50) && (pwlf != 60)) return NULL; /* powerline frequency must be either 50 or 60Hz */
if(sf % pwlf) return NULL; /* ratio between the samplefrequency and the powerline frequency must be an integer multiple */
if((lt < 1) || (lt > 100000)) return NULL; /* range for the linear detection threshold */
st = (struct plif_subtract_filter_settings *) calloc(1, sizeof(struct plif_subtract_filter_settings));
if(st==NULL) return NULL;
st->sf = sf;
st->tpl = sf / pwlf; /* the number of samples in one cycle of the powerline frequency */
st->ravg_idx = 0;
st->buf_idx = 0;
st->linear_threshold = lt; /* the threshold to detect the linear region */
st->ravg_buf = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->ravg_buf == NULL) /* buffer for the running average filter */
{
free(st);
return NULL;
}
st->ref_buf = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->ref_buf == NULL) /* buffer for the reference noise, used to be subtracted from the ECG signal */
{
free(st->ravg_buf);
free(st);
return NULL;
}
for(i=0;i<PLIF_NBUFS; i++)
{
st->ravg_noise_buf[i] = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->ravg_noise_buf[i] == NULL) /* buffers used for the noise extraction */
{
free(st->ravg_buf);
free(st->ref_buf);
free(st);
return NULL;
}
}
for(i=0;i<PLIF_NBUFS; i++)
{
st->input_buf[i] = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->input_buf[i] == NULL) /* inputbuffers used for detecting the linear region */
{
free(st->ravg_buf);
free(st->ref_buf);
free(st);
return NULL;
}
}
return st;
}
double plif_run_subtract_filter(double new_input, struct plif_subtract_filter_settings *st)
{
int i, j, pre, linear_buf_idx, linear_bufs, linear;
double ravg_val, fd_max, fd_min, dtmp, thr, ret_val;
if(st == NULL)
{
return 0;
}
/* running average filter */
st->ravg_buf[st->ravg_idx] = new_input;
ravg_val = 0;
for(i=0; i<st->tpl; i++)
{
ravg_val += st->ravg_buf[i];
}
ravg_val /= st->tpl;
/* delay the input with half tpl samples */
new_input = st->ravg_buf[(st->ravg_idx + (st->tpl / 2)) % st->tpl];
ret_val = new_input - st->ref_buf[st->ravg_idx];
st->input_buf[st->buf_idx][st->ravg_idx] = new_input;
st->ravg_noise_buf[st->buf_idx][st->ravg_idx] = new_input - ravg_val; /* store the noise extracted from the signal into the buffers */
if(++st->ravg_idx >= st->tpl) /* buffer full? if so, check for linearity */
{
st->ravg_idx = 0;
fd_max = 1e-9;
fd_min = 1e9;
pre = (st->buf_idx - 1 + PLIF_NBUFS) % PLIF_NBUFS; /* index to the buffer before */
for(i=0; i<st->tpl; i++) /* compare this buffer with buffer before for their max and min values */
{ /* distance between the 1th differences equals tpl in order to exclude the powerline noise from the detection */
dtmp = st->input_buf[st->buf_idx][i] - st->input_buf[pre][i];
if(dtmp > fd_max) fd_max = dtmp;
if(dtmp < fd_min) fd_min = dtmp;
}
st->linear_diff[st->buf_idx] = fd_max - fd_min; /* for every buffer we store the maximum difference (related to the buffer before) */
for(j=0; j<39; j++)
{
thr = (j + 1) * st->linear_threshold; /* first we try with the lowest threshold possible (5uV) */
/* if we can't find a linear region of at least 60 milli-seconds long, */
/* we increase the threshold and try again */
for(i=0, linear=0, linear_bufs=0; i<(PLIF_NBUFS - 1); i++)
{
linear_buf_idx = st->buf_idx - i + PLIF_NBUFS;
linear_buf_idx %= PLIF_NBUFS;
if(st->linear_diff[linear_buf_idx] < thr) linear_bufs++;
else linear_bufs = 0;
if(linear_bufs == 5) /* we need five consegutive buffers (100 milli-sec.) to pass the threshold limit */
{
linear = 1;
break;
}
}
if(linear) break;
}
if(linear) /* are we in a linear region? */
{
for(j=0; j<3; j++) /* average three buffers from the five (don't use the first and the last buffer) containing the extracted noise */
{
linear_buf_idx += j + PLIF_NBUFS;
linear_buf_idx %= PLIF_NBUFS;
if(!j)
{
for(i=0; i<st->tpl; i++)
{
st->ref_buf[i] = st->ravg_noise_buf[linear_buf_idx][i];
}
}
else
{
for(i=0; i<st->tpl; i++)
{
st->ref_buf[i] += st->ravg_noise_buf[linear_buf_idx][i];
}
}
}
for(i=0; i<st->tpl; i++)
{
st->ref_buf[i] /= j; /* calculate the average */
}
}
st->buf_idx++; /* increment the index */
st->buf_idx %= PLIF_NBUFS; /* check boundary and roll-over if necessary */
}
return ret_val;
}
struct plif_subtract_filter_settings * plif_subtract_filter_create_copy(struct plif_subtract_filter_settings *st_ori)
{
int i;
struct plif_subtract_filter_settings *st;
if(st_ori == NULL)
{
return NULL;
}
st = (struct plif_subtract_filter_settings *) calloc(1, sizeof(struct plif_subtract_filter_settings));
if(st==NULL) return NULL;
*st = *st_ori;
st->ravg_buf = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->ravg_buf == NULL)
{
free(st);
return NULL;
}
memcpy(st->ravg_buf, st_ori->ravg_buf, sizeof(double) * st->tpl);
st->ref_buf = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->ref_buf == NULL)
{
free(st->ravg_buf);
free(st);
return NULL;
}
memcpy(st->ref_buf, st_ori->ref_buf, sizeof(double) * st->tpl);
for(i=0;i<PLIF_NBUFS; i++)
{
st->ravg_noise_buf[i] = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->ravg_noise_buf[i] == NULL)
{
free(st->ravg_buf);
free(st->ref_buf);
free(st);
return NULL;
}
memcpy(st->ravg_noise_buf[i], st_ori->ravg_noise_buf[i], sizeof(double) * st->tpl);
}
for(i=0;i<PLIF_NBUFS; i++)
{
st->input_buf[i] = (double *)calloc(1, sizeof(double) * st->tpl);
if(st->input_buf[i] == NULL)
{
free(st->ravg_buf);
free(st->ref_buf);
free(st);
return NULL;
}
memcpy(st->input_buf[i], st_ori->input_buf[i], sizeof(double) * st->tpl);
}
for(i=0;i<PLIF_NBUFS; i++)
{
st->linear_diff[i] = st_ori->linear_diff[i];
}
return st;
}
void plif_free_subtract_filter(struct plif_subtract_filter_settings *st)
{
int i;
if(st == NULL)
{
return;
}
free(st->ravg_buf);
for(i=0; i<PLIF_NBUFS; i++)
{
free(st->ravg_noise_buf[i]);
free(st->input_buf[i]);
}
free(st->ref_buf);
free(st);
}
void plif_reset_subtract_filter(struct plif_subtract_filter_settings *st, double reference)
{
int i, j;
if(st == NULL)
{
return;
}
st->ravg_idx = 0;
st->buf_idx = 0;
for(j=0; j<st->tpl; j++)
{
st->ravg_buf[j] = reference;
}
for(i=0; i<PLIF_NBUFS; i++)
{
memset(st->ravg_noise_buf[i], 0, sizeof(double) * st->tpl);
for(j=0; j<st->tpl; j++)
{
st->input_buf[i][j] = reference;
}
st->linear_diff[i] = 1e9;
}
memset(st->ref_buf, 0, sizeof(double) * st->tpl);
}
void plif_subtract_filter_state_copy(struct plif_subtract_filter_settings *dest, struct plif_subtract_filter_settings *src)
{
int i;
if((dest == NULL) || (src == NULL)) return;
if(dest->sf != src->sf) return;
if(dest->tpl != src->tpl) return;
dest->ravg_idx = src->ravg_idx;
dest->buf_idx = src->buf_idx;
dest->linear_threshold = src->linear_threshold;
memcpy(dest->ravg_buf, src->ravg_buf, sizeof(double) * dest->tpl);
memcpy(dest->ref_buf, src->ref_buf, sizeof(double) * dest->tpl);
for(i=0; i<PLIF_NBUFS; i++)
{
memcpy(dest->ravg_noise_buf[i], src->ravg_noise_buf[i], sizeof(double) * dest->tpl);
memcpy(dest->input_buf[i], src->input_buf[i], sizeof(double) * dest->tpl);
dest->linear_diff[i] = src->linear_diff[i];
}
}
|