1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
/*
***************************************************************************
*
* Author: Teunis van Beelen
*
* Copyright (C) 2020 - 2025 Teunis van Beelen
*
* Email: teuniz@protonmail.com
*
***************************************************************************
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
***************************************************************************
*/
/* This is an implementation of the Pan-Tompkins QRS detector algorithm.
* The performance has been tested on an annotated arrhythmia database (MIT-BIH):
*
* sensitivity: 99.76 % positive predictivity: 99.47 %
*
* Se = TP / (TP + FN) sensitivity
*
* +P = TP / (TP + FP) positive predictivity
*
* TP: true positive detections
* FN: false negatives
* FP: false positives
*
* The following conditions apply:
*
* 1: maximum allowed misalignment (time skew) of the detected R-peak relative to
* the annotation in order to be a correctly detected beat, is 110 milli-Sec.
*
* 2: in case parts of the signal with ventricular flutter/fibrillation were excluded
* during the evaluation, the rates are:
* sensitivity: 99.76 % positive predictivity: 99.80 %
*
* 3: For every record in the database, the lead with best signal quality was chosen.
* The first signal in the records was chosen, except for records 108, 113, 114, 116,
* 117, 202, 222, 228, 232 for which the second signal was selected.
* In case always the first signal is selected for every record, the rates are:
* sensitivity: 99.42 % positive predictivity: 99.37 %
*
* https://courses.cs.washington.edu/courses/cse474/18wi/labs/l8/QRSdetection.pdf
*
* https://en.wikipedia.org/wiki/Pan%E2%80%93Tompkins_algorithm
*
* https://archive.physionet.org/physiobank/database/mitdb/
*/
#include <stdlib.h>
#include <math.h>
#include "pt_qrs.h"
/* The algorithm only works correctly when a sample rate of 200Hz is used.
* This implementation has a downsampling routine added so that also higher
* samplingrates work correctly.
*/
#define SMPL_FREQ (200)
/* Once a valid QRS complex is recognized, there is a 200 ms refractory period
* before the next one can be detected since QRS complexes cannot occur more
* closely than this physiologically. This refractory period eliminates the
* possibility of a false detection such as multiple triggering on the same
* QRS complex during this time interval.
*/
#define REFRACT_PERIOD (40)
/* When a QRS detection occurs following the end of the refractory period but
* within 360 ms of the previous complex, we must determine if it is a valid
* QRS complex or a T-wave.
*/
#define T_WAVE_PERIOD (72)
/* Used to find the highest peak in the squared differentiator output array.
*/
#define SLOPE_SEARCH_WIDTH (15)
/* Constants for the analog filters.
*/
#define LPF_C1 (1)
#define LPF_C2 (2)
#define LPF_C3 (6)
#define LPF_C4 (12)
#define HPF_C1 (1)
#define HPF_C2 (16)
#define HPF_C3 (17)
#define HPF_C4 (32)
#define DIFF_C1 (1)
#define DIFF_C2 (3)
#define DIFF_C3 (4)
static inline void pt_qrs_bpf_diff_sqr(double, ptqrsset_t *);
static inline void pt_qrs_adjust_thresholds(int, int, ptqrsset_t *);
static inline void pt_qrs_adjust_rr_averages(ptqrsset_t *, int);
static inline double pt_qrs_get_slope(ptqrsset_t *);
static inline int pt_qrs_search_back(ptqrsset_t *);
/* Creates a new qrs detector object.
* ds_sf_in is the input sample rate
* sense is the sensitivity expressed in uVolts/bit
* if your input samples are expressed in uVolts, set it to 1
* if your input samples are expressed in mVolts, set it to 1000
* Returns a pointer to the qrs detector object.
*/
ptqrsset_t * create_pt_qrs(double ds_sf_in, double sense)
{
int i;
ptqrsset_t *st;
if((ds_sf_in < 199.999999) || (sense < 1e-6)) return NULL; /* sanity check */
st = (ptqrsset_t *)calloc(1, sizeof(ptqrsset_t));
if(st==NULL) return NULL;
/* The compensation for the delay of the filters.
*/
st->del_comp = 21;
st->rr_low_limit = 0.92 * SMPL_FREQ;
st->rr_high_limit = 1.16 * SMPL_FREQ;
st->rr_missed_limit = 1.66 * SMPL_FREQ;
for(i=0; i<PT_QRS_RR_AVG_LEN; i++)
{
st->rr_avg_x1[i] = SMPL_FREQ;
st->rr_avg_x2[i] = SMPL_FREQ + 10;
}
/* The article does not say if and how to initialize the variables
* used in the algorithm. Based on results during validation using
* the MIT-BIH arrhythmia database, I decided to use the following values.
*/
st->spki = 2000.0 / sense;
st->spkf = 7000.0 / sense;
st->sqr_out_clip = (5000.0 / sense) * (5000.0 / sense);
/******** begin down sampling section ********/
st->ds_ratio = ds_sf_in / SMPL_FREQ;
st->ds_ravg_len = st->ds_ratio;
st->ds_sf_out = SMPL_FREQ;
if(st->ds_ravg_len > 1)
{
st->ds_ravg_buf = (double *)calloc(1, st->ds_ravg_len * sizeof(double));
if(st->ds_ravg_buf == NULL)
goto CREATE_OUT_ERROR;
}
/******** end down sampling section ********/
return st;
CREATE_OUT_ERROR:
free_pt_qrs(st);
return NULL;
}
void free_pt_qrs(ptqrsset_t *st)
{
if(st == NULL) return;
free(st->ds_ravg_buf);
free(st);
}
/* new_val is the new input sample.
* st is a pointer to a qrs detector object.
* Returns the position of the R-peak expressed in samples
* relative to this sample when a beat has been detected.
* Otherwise it returns 0.
*/
int run_pt_qrs(double new_val, ptqrsset_t *st)
{
int i,
r_peak_detected_1st_run=0,
r_peak_detected_2nd_run=0,
r_peak_pos=0;
double hpf_out, mwi_out, slope;
if(st == NULL) return 0;
/**************************************************************/
/* start with the downsampling (the algorithm requires 200Hz) */
/**************************************************************/
double ds_avg, ds_tmp, ds_fract, ds_val_out;
if(st->ds_ravg_buf != NULL)
{
st->ds_ravg_buf[st->ds_ravg_idx++] = new_val;
st->ds_ravg_idx %= st->ds_ravg_len;
for(i=0, ds_avg=0; i<st->ds_ravg_len; i++)
{
ds_avg += st->ds_ravg_buf[i];
}
ds_avg /= st->ds_ravg_len;
}
else
{
ds_avg = new_val;
}
if(st->ds_num_smpl++ == (((long long)st->ds_smpl_pos) + 1))
{
ds_fract = modf(st->ds_smpl_pos, &ds_tmp);
ds_val_out = (ds_avg * ds_fract) + (st->ds_old_val * (1.0 - ds_fract));
st->ds_smpl_pos += st->ds_ratio;
st->ds_old_val = ds_avg;
}
else
{
st->ds_old_val = ds_avg;
return 0;
}
/**************************************************************/
/* start with the filter part of the algorithm */
/**************************************************************/
pt_qrs_bpf_diff_sqr(ds_val_out, st);
/**************************************************************/
/* start with the rule-based part of the algorithm */
/**************************************************************/
hpf_out = st->hpf_out;
/*
* Take the absolute value of the bandpass filter output.
* It avoids problems in case of an inverted signal.
*/
if(hpf_out < 0)
{
hpf_out *= -1;
}
st->hpf_out = hpf_out;
mwi_out = st->mwi_out;
/* if it's within 200 mSec of the last peak, do nothing
*/
if(st->smpls_last_pk <= REFRACT_PERIOD)
{
goto RUN_OUT_RETURN;
}
/* check also the lower thresholds in case we need to do a second run
*/
if((mwi_out >= st->threshold_i2) && (hpf_out >= st->threshold_f2))
{
if(hpf_out > st->hpf_out_lt)
{
st->idx_lt = st->smpls_last_pk;
st->mwi_out_lt = mwi_out;
st->hpf_out_lt = hpf_out;
slope = pt_qrs_get_slope(st);
if(st->slope_lt < slope)
{
st->slope_lt = slope;
}
}
}
/* A peak is a local maximum determined by observing when the signal
* changes direction within a predefined time interval.
* So, after detecting a candidate peak, continue checking the next samples until
* MWI or the filtered ECG starts to decline. This way we find the real peak of
* the waveform.
*/
/* To be identified as a QRS complex, a peak must be recognized as such a complex
* by both the integration and bandpass-filtered waveforms.
*/
if(mwi_out >= st->threshold_i1)
{
if(hpf_out >= st->threshold_f1)
{
/* A peak is a local maximum determined by observing when the signal
* changes direction within a predefined time interval.
* So, after detecting a candidate peak, continue checking the next samples until
* MWI or the filtered ECG starts to decline. This way we find the real peak of
* the waveform.
*/
if(((st->pk_det_start) && (mwi_out >= st->mwi_out_old) && (hpf_out >= st->hpf_out_old)) || (!st->pk_det_start))
{
st->mwi_out_old = mwi_out;
st->hpf_out_old = hpf_out;
st->idx_ht = st->smpls_last_pk;
st->pk_det_start++;
goto RUN_OUT_RETURN;
}
else if(st->pk_det_start && (st->pk_det_start < SLOPE_SEARCH_WIDTH))
{
st->pk_det_start++;
goto RUN_OUT_RETURN;
}
}
else if(st->pk_det_start && (st->pk_det_start < SLOPE_SEARCH_WIDTH))
{
st->pk_det_start++;
goto RUN_OUT_RETURN;
}
}
else if(st->pk_det_start && (st->pk_det_start < SLOPE_SEARCH_WIDTH))
{
st->pk_det_start++;
goto RUN_OUT_RETURN;
}
if(st->pk_det_start) /* we found the highest peak */
{
st->pk_det_start = 0;
st->peaki = st->mwi_out_old;
st->peakf = st->hpf_out_old;
slope = pt_qrs_get_slope(st);
/* When an RR interval is less than 360 ms (it must be greater than the 200 ms latency),
* a judgement is made to determine whether the current QRS complex has been correctly
* identified or whether it is really a T wave. If the maximal slope that occurs during
* this waveform is less than half that of the QRS waveform that preceded it, it is
* identified to be a T wave; otherwise it is called a QRS complex.
*/
if((st->smpls_last_pk > T_WAVE_PERIOD) || (slope >= (st->slope_last / 2.0)))
{
st->slope_last = slope;
pt_qrs_adjust_thresholds(0, 0, st);
pt_qrs_adjust_rr_averages(st, 0);
st->mwi_out_lt = 0;
st->hpf_out_lt = 0;
st->idx_lt = 0;
st->slope_lt = 0;
r_peak_detected_1st_run = 1;
}
}
if(!r_peak_detected_1st_run)
{
if((st->smpls_last_pk > st->rr_missed_limit) && (st->smpls_last_pk > REFRACT_PERIOD))
{
r_peak_detected_2nd_run = pt_qrs_search_back(st);
}
}
RUN_OUT_RETURN:
if((!r_peak_detected_1st_run) && (!r_peak_detected_2nd_run))
{
st->peaki = mwi_out;
st->peakf = hpf_out;
pt_qrs_adjust_thresholds(1, 0, st);
}
if((!r_peak_detected_1st_run) && (!r_peak_detected_2nd_run))
{
r_peak_pos = 0;
/* If no QRS complex has been recognized for 5 seconds, lower the thresholds.
* This avoids that, after recurring artefacts, the thresholds become too high and
* no more beats will be detected.
*/
if(++st->smpls_last_pk >= (5 * SMPL_FREQ))
{
if(st->smpls_last_pk < (15 * SMPL_FREQ))
{
if(!(st->smpls_last_pk % SMPL_FREQ))
{
pt_qrs_adjust_thresholds(0, 1, st);
}
}
}
}
else if(r_peak_detected_1st_run)
{
r_peak_pos = st->smpls_last_pk - st->idx_ht + st->del_comp;
st->smpls_last_pk -= st->idx_ht;
st->idx_ht = 0;
}
else if(r_peak_detected_2nd_run)
{
r_peak_pos = st->smpls_last_pk - st->idx_lt + st->del_comp;
st->smpls_last_pk -= st->idx_lt;
st->idx_lt = 0;
st->slope_lt = 0;
}
else /* catch all */
{
r_peak_pos = 0;
st->smpls_last_pk++;
}
return ((int)(((double)r_peak_pos * st->ds_ratio) + 0.5));
}
static inline void pt_qrs_bpf_diff_sqr(double new_val, ptqrsset_t *st)
{
int i;
double mwi_out, hpf_out, diff_out;
double lpf_out;
st->lpfx[st->lpf_idx] = new_val;
lpf_out = (2.0 * st->lpfy[(st->lpf_idx + PT_LPF_LEN - LPF_C1) % PT_LPF_LEN]) -
st->lpfy[(st->lpf_idx + PT_LPF_LEN - LPF_C2) % PT_LPF_LEN] +
st->lpfx[st->lpf_idx] -
(2.0 * st->lpfx[(st->lpf_idx + PT_LPF_LEN - LPF_C3) % PT_LPF_LEN]) +
st->lpfx[(st->lpf_idx + PT_LPF_LEN - LPF_C4) % PT_LPF_LEN];
st->lpfy[st->lpf_idx] = lpf_out;
st->lpf_idx++;
st->lpf_idx %= PT_LPF_LEN;
st->hpfx[st->hpf_idx] = lpf_out;
hpf_out = st->hpfy[(st->hpf_idx + PT_HPF_LEN - HPF_C1) % PT_HPF_LEN] -
(st->hpfx[st->hpf_idx] / 32.0) +
st->hpfx[(st->hpf_idx + PT_HPF_LEN - HPF_C2) % PT_HPF_LEN] -
st->hpfx[(st->hpf_idx + PT_HPF_LEN - HPF_C3) % PT_HPF_LEN] +
(st->hpfx[(st->hpf_idx + PT_HPF_LEN - HPF_C4) % PT_HPF_LEN] / 32.0);
st->hpfy[st->hpf_idx] = hpf_out;
st->hpf_idx++;
st->hpf_idx %= PT_HPF_LEN;
st->hpf_out = hpf_out;
st->diffx[st->diff_idx] = hpf_out;
diff_out = ((2 * st->diffx[st->diff_idx]) +
st->diffx[(st->diff_idx + PT_DIFF_LEN - DIFF_C1) % PT_DIFF_LEN] -
st->diffx[(st->diff_idx + PT_DIFF_LEN - DIFF_C2) % PT_DIFF_LEN] -
(2 * st->diffx[(st->diff_idx + PT_DIFF_LEN - DIFF_C3) % PT_DIFF_LEN])) / 8.0;
st->diff_idx++;
st->diff_idx %= PT_DIFF_LEN;
st->sqr_out = diff_out * diff_out;
/* The output of the squaring function was hardlimited to a maximal value of 255.
*/
if(st->sqr_out > st->sqr_out_clip)
{
st->sqr_out = st->sqr_out_clip;
}
st->mwix[st->mwi_idx] = st->sqr_out;
for(i=0, mwi_out=0; i<PT_MWI_LEN; i++)
{
mwi_out += st->mwix[i];
}
mwi_out /= PT_MWI_LEN;
st->mwi_idx++;
st->mwi_idx %= PT_MWI_LEN;
st->mwi_out = mwi_out;
}
/* If a QRS complex is not found during the interval specified by the rr_missed_limit,
* the maximal peak reserved between the two established thresholds is considered to
* be a QRS candidate.
*/
static inline int pt_qrs_search_back(ptqrsset_t *st)
{
if(st->idx_lt < 1) return 0;
if(st->slope_lt < (st->slope_last * 0.15)) return 0;
st->peaki = st->mwi_out_lt;
st->peakf = st->hpf_out_lt;
st->pk_det_start = 0;
pt_qrs_adjust_thresholds(0, 1, st);
pt_qrs_adjust_rr_averages(st, 1);
st->mwi_out_lt = 0;
st->hpf_out_lt = 0;
return 1;
}
/* Adjusting the thresholds.
*
* The thresholds are automatically adjusted to float over the noise.
* Low thresholds are possible because of the improvements of the
* signal-to-noise ratio by the band-pass filter. The higher of the two
* thresholds is used for the first analysis of the signal. The lower
* threshold is used if no QRS is detected in a certain time interval
* so that a search-back technique is necessary to look back in time
* for the QRS complex.
*
* peaki is the overall peak
* spki is the running estimate of the signal peak
* npki is the running estimate of the noise peak
* threshold_i1 is the first threshold applied
* threshold_i2 is the second threshold applied
*
* A peak is a local maximum determined by observing when the signal
* changes direction within a predefined time interval. The signal
* spki is a peak that the algorithm has already established to be a
* QRS complex. The noise peak npki is any peak that is not related
* to the QRS (e.g., the T-wave). The thresholds are based upon running
* estimates of spki and npki. That is, new values of these variables
* are computed in part from their prior values. When a new peak is
* detected, it must first be classified as a noise peak or a signal
* peak. To be a signal peak, the peak must exceed threshold_i1 as the
* signal is first analyzed or threshold_i2 if searchback is required
* to find the QRS.
*
* the variables referring to the filtered ECG:
*
* peakf is the overall peak
* spkf is the running estimate of the signal peak
* npkf is the running estimate of the noise peak
* threshold_f1 is the first threshold applied
* threshold_f2 is the second threshold applied
*
*/
static inline void pt_qrs_adjust_thresholds(int noise, int thr2, ptqrsset_t *st)
{
if(noise)
{
st->npki = (0.125 * st->peaki) + (0.875 * st->npki);
st->npkf = (0.125 * st->peakf) + (0.875 * st->npkf);
}
else
{
if(thr2) /* When the QRS complex is found using the second threshold */
{
st->spki = (0.25 * st->peaki) + (0.75 * st->spki);
st->spkf = (0.25 * st->peakf) + (0.75 * st->spkf);
}
else
{
st->spki = (0.125 * st->peaki) + (0.875 * st->spki);
st->spkf = (0.125 * st->peakf) + (0.875 * st->spkf);
}
}
st->threshold_i1 = st->npki + (0.25 * (st->spki - st->npki));
st->threshold_f1 = st->npkf + (0.25 * (st->spkf - st->npkf));
st->threshold_i2 = st->threshold_i1 / 2.0;
st->threshold_f2 = st->threshold_f1 / 2.0;
}
/* Adjusting the Average RR Interval and Rate Limits
*
* Two RR-interval averages are maintained. One is the average
* of the eight most-recent beats. The other is the average of the
* eight most-recent beats that fall within certain limits. The
* reason is to be able to adapt to quickly changing or irregular
* heart rates. The first average is the mean of the eight most-
* recent sequential RR intervals regardless of their values.
* The second average is based on selected beats that fell between
* the acceptable low and high RR-interval limits.
*/
static inline void pt_qrs_adjust_rr_averages(ptqrsset_t *st, int bs)
{
int i, idx;
if(bs)
{
idx = st->idx_lt;
}
else
{
idx = st->smpls_last_pk;
}
st->rr_avg_x1[st->rr_avg_idx1++] = idx;
st->rr_avg_idx1 %= PT_QRS_RR_AVG_LEN;
for(i=0, st->rr_average1=0; i<PT_QRS_RR_AVG_LEN; i++)
{
st->rr_average1 += st->rr_avg_x1[i];
}
st->rr_average1 /= PT_QRS_RR_AVG_LEN;
if((idx >= st->rr_low_limit) && (idx <= st->rr_high_limit))
{
st->rr_avg_x2[st->rr_avg_idx2++] = idx;
st->rr_avg_idx2 %= PT_QRS_RR_AVG_LEN;
for(i=0, st->rr_average2=0; i<PT_QRS_RR_AVG_LEN; i++)
{
st->rr_average2 += st->rr_avg_x2[i];
}
st->rr_average2 /= PT_QRS_RR_AVG_LEN;
}
if(st->rr_average1 == st->rr_average2)
{
st->rr_regular = 1;
}
else if(st->rr_regular)
{
st->rr_regular = 0;
/* For irregular heart rates, the first threshold of each set is reduced
* by half so as to increase the detection sensitivity and to avoid
* missing beats.
*/
st->threshold_i1 /= 2.0;
st->threshold_f1 /= 2.0;
}
/* In the section "Adjusting the Average RR Interval and Rate Limits" is written that
* the RR LOW LIMIT, RR HIGH LIMIT and RR MISSED LIMIT are derived from RR AVERAGE2.
*
* But RR AVERAGE2 is updated only with RR intervals that are within the RR LOW LIMIT and RR HIGH LIMIT.
* That means that, if suddenly the RR interval changes to a value outside of the limits and stays there,
* the limits will never be adjusted. So, we use RR AVERAGE1 to derive the limits.
*/
st->rr_low_limit = 0.92 * st->rr_average1;
st->rr_high_limit = 1.16 * st->rr_average1;
st->rr_missed_limit = 1.66 * st->rr_average1;
}
/* search back and find the highest peak in the squared differentiator output array */
static inline double pt_qrs_get_slope(ptqrsset_t *st)
{
int i;
double slope=0;
for(i=0; i<SLOPE_SEARCH_WIDTH; i++)
{
if(slope < st->mwix[(st->mwi_idx + PT_MWI_LEN - i) % PT_MWI_LEN])
{
slope = st->mwix[(st->mwi_idx + PT_MWI_LEN - i) % PT_MWI_LEN];
}
}
return slope;
}
|