File: activetwo.c

package info (click to toggle)
eegdev 0.2-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,108 kB
  • sloc: ansic: 32,298; sh: 10,962; makefile: 252; lex: 138; yacc: 130; xml: 29
file content (744 lines) | stat: -rw-r--r-- 17,218 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/*
    Copyright (C) 2011-2012  EPFL (Ecole Polytechnique Fédérale de Lausanne)
    Laboratory CNBI (Chair in Non-Invasive Brain-Machine Interface)
    Nicolas Bourdaud <nicolas.bourdaud@epfl.ch>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif

#include <stdlib.h>
#include <limits.h>
#include <libusb.h>
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <byteswap.h>

#include "fakeact2.h"
#include "time-utils.h"

// Replacement declarations: it uses the proper declaration if the function
// is declared on the system
#include <portable-time.h>

#ifndef LIBUSB_CALL
#define LIBUSB_CALL
#endif

#define USB_ACTIVETWO_VENDOR_ID		0x0547
#define USB_ACTIVETWO_PRODUCT_ID	0x1005
#define ACT2_EP_OUT			0x01
#define ACT2_EP_IN			0x82

#define MAXREQ	8

struct usb_request {
	struct libusb_transfer* transfer;
	struct timespec ts;
};

struct event_queue {
	pthread_cond_t cond;
	pthread_mutex_t lock;

	int nqueued, free;
	struct usb_request queue[MAXREQ];
};


struct libusb_context {
	struct event_queue queue;
};


/*****************************************************************
 *                     System capabilities                       *
 *****************************************************************/
static const unsigned short samplerates[2][9] = {
	{2048, 4096, 8192, 16384, 2048, 4096, 8192, 16384, 2048},
	{2048, 2048, 2048, 2048, 2048, 4096, 8192, 16384, 2048}
};
static const unsigned short sample_array_sizes[2][9] = {
	{258, 130, 66, 34, 258, 130, 66, 34, 290}, 
	{610, 610, 610, 610, 282, 154, 90, 58, 314}
}; 
static const unsigned short num_eeg_channels[2][9] = {
	{256, 128, 64, 32, 232, 104, 40, 8, 256}, 
	{512, 512, 512, 512, 256, 128, 64, 32, 280}
}; 

/********************************************
 *                 event queue              *
 ********************************************/
static
void init_queue(struct event_queue* queue)
{
	memset(queue, 0, sizeof(*queue));

	pthread_cond_init(&queue->cond, NULL);
	pthread_mutex_init(&queue->lock, NULL);
}


static
void destroy_queue(struct event_queue* queue, pthread_t thid)
{
	pthread_mutex_lock(&queue->lock);
	queue->free = 1;
	pthread_cond_signal(&queue->cond);
	pthread_mutex_unlock(&queue->lock);

	if (thid)
		pthread_join(thid, NULL);

	pthread_cond_destroy(&queue->cond);	
	pthread_mutex_destroy(&queue->lock);	
}


static
struct libusb_transfer* peek_transfer(struct event_queue* eq, int req)
{
	struct libusb_transfer* transfer = NULL;
	
	if ((req < 0) || (req >= eq->nqueued))
		return NULL;

	transfer = eq->queue[req].transfer;
	eq->nqueued--;
	memmove(&eq->queue[req], &eq->queue[req+1], 
	        eq->nqueued * sizeof(eq->queue[0]));

	return transfer;
}


static 
int wait_transfer(struct event_queue* eq,
                  int (*ts_cb)(struct timespec*, void*), void* data)
{
	struct timespec ts, nextts = {.tv_sec = eq->queue[0].ts.tv_sec + (LONG_MAX/1000000)};
	int i, req = -1;
	unsigned int timeout;

	while (1) {
		if (eq->free) 
			return -1;

		// Check when the normal operation will succeed
		if (eq->nqueued && ts_cb)
			req = ts_cb(&nextts, data);
	
		// Find the next event timestamp
		for (i=0; i<eq->nqueued; i++) {
			// Handle cancelled transfer with higher priority
			if (eq->queue[i].transfer->status == LIBUSB_TRANSFER_CANCELLED) 
				return i;
				
			// Test timeout timestamp
			memcpy(&ts, &eq->queue[i].ts, sizeof(ts));
			timeout = eq->queue[i].transfer->timeout;
			addtime(&ts, timeout/1000, (timeout%1000)*1000000);
			if (difftime_us(&ts, &nextts) < 0) {
				req = i;
				memcpy(&nextts, &ts, sizeof(ts));
			}
		}

		// Wait for the timeout or for a request to be added
		if (req < 0)
			pthread_cond_wait(&eq->cond, &eq->lock);
		else if (pthread_cond_timedwait(&eq->cond, &eq->lock, &nextts) == ETIMEDOUT) {
			clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &nextts, NULL);
			break;
		}
	}

	return req;
}


static 
int enqueue_transfer(struct event_queue* eq, struct libusb_transfer* transfer, struct timespec* ts)
{
	int i;
	
	pthread_mutex_lock(&eq->lock);
	if (eq->free)
		goto exit;
	i = eq->nqueued++;
	eq->queue[i].transfer = transfer;
	memcpy(&eq->queue[i].ts, ts, sizeof(*ts));
	pthread_cond_signal(&eq->cond);
exit:
	pthread_mutex_unlock(&eq->lock);

	return 0;
}


static 
int cancel_transfer(struct event_queue* eq, struct libusb_transfer* transfer)
{
	int i, ret = -1;
	pthread_mutex_lock(&eq->lock);
	for (i=0; i<eq->nqueued; i++) {
		if ((eq->queue[i].transfer == transfer)
		 && (transfer->status != LIBUSB_TRANSFER_CANCELLED)) {
			transfer->status = LIBUSB_TRANSFER_CANCELLED;
			ret = 0;
			pthread_cond_signal(&eq->cond);
		}
	}
	pthread_mutex_unlock(&eq->lock);

	return ret;
}


static 
struct libusb_transfer* dequeue_transfer(struct event_queue* eq, struct timespec* to)
{
	struct libusb_transfer* transfer;

	pthread_mutex_lock(&eq->lock);
	while (to && !eq->nqueued) {
		if (pthread_cond_timedwait(&eq->cond, &eq->lock, to) == ETIMEDOUT) {
			clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, to, NULL);
			break;
		}
	}
	transfer = peek_transfer(eq, 0);
	pthread_mutex_unlock(&eq->lock);

	return transfer;
}


/*************************************************************
 *                    Device implementation                  *
 *************************************************************/
struct libusb_device_handle {
	int streaming;
	int32_t stateval;
	struct timespec start;
	int quit;
	int fs, samsize, datatransfer;
	unsigned int neeg, nexg;
	struct libusb_context* ctx;
	struct event_queue ep_in, ep_out;
	pthread_t th_ep_in, th_ep_out;
};

static
void fill_data_buffer(struct libusb_device_handle* dev,
                      unsigned char* data, size_t datatr, unsigned int len)
{
	unsigned int i, trlen, soff, son, arrlen;
	unsigned int neeg = dev->neeg, nexg = dev->nexg;
	int32_t *sdata = (int32_t*)data, stateval = dev->stateval;
	size_t is = datatr / dev->samsize;
	arrlen = dev->samsize/sizeof(*sdata);
	len /= sizeof(*sdata);
	son = (datatr % dev->samsize)/sizeof(*sdata);
	soff = arrlen;
	trlen = (soff - son);

	while (len) {
		if (trlen > len) {
			soff -= trlen - len;
			trlen = len;
		}

		if (son == 0 && soff >= 1) 
			sdata[0-son] = 0xFFFFFF00;
		
		if (son <= 1 && soff >= 2)
			sdata[1-son] = compute_trigger(is, stateval);

		for (i=0; i<neeg; i++)
			if (i+2>=son && i+2<soff)
				sdata[2+i-son] = get_analog_val(is, i, 0);

		for (i=0; i<nexg; i++)
			if (i+2+neeg>=son && i+2+neeg<soff)
				sdata[2+neeg+i-son] = get_analog_val(is, i, 1);

#if WORDS_BIGENDIAN
		for (i=0; i<trlen; i++)
			sdata[i] = bswap_32(sdata[i]);
#endif

		is++;
		len -= trlen;
		sdata += trlen;
		son = 0;
		trlen = soff = arrlen;
	}

}


static
void init_stateval(struct libusb_device_handle* dev, unsigned int mode, unsigned int mk)
{
	uint32_t stateval;

	dev->samsize = sample_array_sizes[mk][mode] * sizeof(int32_t);
	dev->fs = samplerates[mk][mode];
	dev->neeg = num_eeg_channels[mk][mode];
	dev->nexg = dev->samsize/sizeof(int32_t) - dev->neeg - 2;

	stateval = 0x00000000;
	stateval |= ((mode & 0x7)<<25) | ((mode & 0x8)<< 29);
	stateval |= (1 << 28); //CMS in range
	stateval |= (mk << 31);

	memcpy(&dev->stateval, &stateval, sizeof(stateval));

}


static
void next_ts(struct libusb_device_handle* dev, struct timespec* ts, int len)
{
	int nsample, nsec, size, fs = dev->fs;

	size = dev->datatransfer + len;
	nsample = (size / dev->samsize) + (size % dev->samsize ? 1 : 0);

	memcpy(ts, &dev->start, sizeof(*ts));
	nsec = (nsample%fs)*1.0e9/((double)fs);
	addtime(ts, nsample/fs, nsec);
}


static
int ts_in(struct timespec* ts, void* data)
{
	struct libusb_device_handle* dev = data;
	struct libusb_transfer* transfer = dev->ep_in.queue[0].transfer;

	if (!dev->streaming)
		return -1;

	next_ts(dev, ts, transfer->length);
	return 0;
}


static
int get_available(struct libusb_device_handle* dev)
{
	struct timespec ts;
	int usec, nsample, data, streaming;

	clock_gettime(CLOCK_REALTIME, &ts);
	
	streaming = dev->streaming;
	usec = difftime_us(&ts, &dev->start);
	nsample = (int)(((double)dev->fs)*(1.0e-6*(double)usec));
	data = nsample * dev->samsize - dev->datatransfer;
	
	return streaming ? data - data%64 : 0;
}


static
void* endpoint_in_fn(void* data)
{
	struct libusb_device_handle* dev = data;	
	struct libusb_context* ctx = dev->ctx;
	struct libusb_transfer* transfer;
	struct event_queue* eq = &dev->ep_in;
	struct timespec ts = {0, 0};
	int trlen, reqlen, req, offset;
	int status;

	pthread_mutex_lock(&eq->lock);
	while ((req = wait_transfer(eq, ts_in, dev)) >= 0) {
		if (req == 0) {
			trlen = get_available(dev);
			reqlen = eq->queue[0].transfer->length;
			trlen = (trlen < reqlen) ? trlen : reqlen;
			trlen = trlen - trlen%64;
		} else
			trlen = 0;

		offset = dev->datatransfer;
		dev->datatransfer += trlen;
		transfer = peek_transfer(eq, req);

		pthread_mutex_unlock(&eq->lock);

		transfer->actual_length = trlen;
		status = transfer->status;
		if (status != LIBUSB_TRANSFER_CANCELLED) 
			status = trlen ?  LIBUSB_TRANSFER_COMPLETED
			                : LIBUSB_TRANSFER_TIMED_OUT;
		transfer->status = status;

		fill_data_buffer(dev, transfer->buffer, offset, trlen);

		// Process transfer
		enqueue_transfer(&ctx->queue, transfer, &ts);

		pthread_mutex_lock(&eq->lock);
	}
	pthread_mutex_unlock(&eq->lock);

	return NULL;
}


static
int ts_out(struct timespec* ts, void* data)
{
	struct event_queue* eq = data;
	
	if (!eq->nqueued)
		return -1;

	memcpy(ts, &eq->queue[0].ts, sizeof(*ts));
	return 0;
}




static
void* endpoint_out_fn(void* data)
{
	struct libusb_device_handle* dev = data;
	struct libusb_context* ctx = dev->ctx;
	struct libusb_transfer* transfer;
	struct event_queue* eq = &dev->ep_out;
	struct timespec ts = {0, 0};
	int req;

	pthread_mutex_lock(&eq->lock);
	while ((req = wait_transfer(eq, ts_out, &dev->ep_out))>=0) {
		transfer = peek_transfer(eq, req);
		pthread_mutex_unlock(&eq->lock);

		transfer->status = LIBUSB_TRANSFER_COMPLETED;
		transfer->actual_length = transfer->length;
		
		pthread_mutex_lock(&dev->ep_in.lock);
		if (transfer->buffer[0] == 0x00)
			dev->streaming = 0;
		else if (transfer->buffer[0] == 0xFF) {
			dev->streaming = 1;
			clock_gettime(CLOCK_REALTIME, &dev->start);
		}
		pthread_cond_signal(&dev->ep_in.cond);
		pthread_mutex_unlock(&dev->ep_in.lock);

		// Return transfer in libusb context
		enqueue_transfer(&ctx->queue, transfer, &ts);

		pthread_mutex_lock(&eq->lock);
	}
	pthread_mutex_unlock(&eq->lock);

	return NULL;
}


static
void init_device(struct libusb_device_handle* dev, struct libusb_context* ctx)
{
	dev->ctx = ctx;
	dev->streaming = 0;

	init_stateval(dev, 4, 1);

	init_queue(&dev->ep_in);
	init_queue(&dev->ep_out);

	pthread_create(&dev->th_ep_in, NULL, endpoint_in_fn, dev);
	pthread_create(&dev->th_ep_out, NULL, endpoint_out_fn, dev);
}


static
void destroy_device(struct libusb_device_handle* dev)
{
	destroy_queue(&dev->ep_in, dev->th_ep_in);
	destroy_queue(&dev->ep_out, dev->th_ep_out);
}


/*************************************************************
 *                                                           *
 *************************************************************/
LIBUSB_CALL
int libusb_init(libusb_context **context)
{
	struct libusb_context* ctx;
	ctx = calloc(1,sizeof(*ctx));

	init_queue(&ctx->queue);

	*context = ctx;
	return 0;
}


LIBUSB_CALL
void libusb_exit(libusb_context *ctx)
{
	destroy_queue(&ctx->queue, 0);
	free(ctx);
}


LIBUSB_CALL
int libusb_handle_events_timeout(libusb_context *ctx, struct timeval *tv)
{
	int free_xfer;
	struct libusb_transfer* xfer = NULL;
	struct timespec tots, curr, *to = NULL;

	// Setup timeout timestamp
	if (tv) {
		clock_gettime(CLOCK_REALTIME, &curr);
		memcpy(&tots, &curr, sizeof(curr));
		addtime(&tots, tv->tv_sec, tv->tv_usec*1000);
		to = &tots;
	}

	// Get transfer one by one
	while ((xfer = dequeue_transfer(&ctx->queue, to))) {
		to = NULL;
		free_xfer = xfer->flags & LIBUSB_TRANSFER_FREE_TRANSFER;
		xfer->callback(xfer);
		if (free_xfer)
			libusb_free_transfer(xfer);
	}

	return 0;
}


LIBUSB_CALL
int libusb_submit_transfer(struct libusb_transfer *transfer)
{
	struct timespec ts;
	libusb_device_handle *dev = transfer->dev_handle;
	struct event_queue *eq;
	clock_gettime(CLOCK_REALTIME, &ts);
	addtime(&ts, 0, 10000000);
	
	if (transfer->endpoint == ACT2_EP_IN)
		eq = &dev->ep_in;
	else if (transfer->endpoint == ACT2_EP_OUT)
		eq = &dev->ep_out;
	else
		return LIBUSB_ERROR_OTHER;

	enqueue_transfer(eq, transfer, &ts);	

	return 0;
}


LIBUSB_CALL
int libusb_clear_halt(libusb_device_handle *dev, unsigned char endpoint)
{
	(void)dev;
	(void)endpoint;
	return 0;
}


LIBUSB_CALL
int libusb_cancel_transfer(struct libusb_transfer *transfer)
{
	libusb_device_handle *dev = transfer->dev_handle;
	struct event_queue *eq;
	
	if (transfer->endpoint == ACT2_EP_IN)
		eq = &dev->ep_in;
	else if (transfer->endpoint == ACT2_EP_OUT)
		eq = &dev->ep_out;
	else
		return LIBUSB_ERROR_OTHER;
	
	if (cancel_transfer(eq, transfer))
		return LIBUSB_ERROR_NOT_FOUND;

	return 0;
}


LIBUSB_CALL
struct libusb_transfer *libusb_alloc_transfer(int iso_packets)
{
	struct libusb_transfer* transfer;

	transfer = calloc(1, sizeof(*transfer)
	                + iso_packets*sizeof(transfer->iso_packet_desc[0]));
	if (transfer) 
		transfer->num_iso_packets = iso_packets;
	return transfer;
}


LIBUSB_CALL
void libusb_free_transfer(struct libusb_transfer *transfer)
{
	if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER)
		free(transfer->buffer);
	free(transfer);
}


struct sync_data {
	int done, actual_length, status;
	pthread_cond_t cond;
	pthread_mutex_t lock;
};


static LIBUSB_CALL
void sync_transfer_cb(struct libusb_transfer *transfer)
{
	struct sync_data* data = transfer->user_data;
	
	data->actual_length = transfer->actual_length;
	data->status = transfer->status;

	pthread_mutex_lock(&data->lock);
	data->done = 1;
	pthread_cond_signal(&data->cond);
	pthread_mutex_unlock(&data->lock);
}


LIBUSB_CALL
int libusb_bulk_transfer(libusb_device_handle *dev,
	unsigned char endpoint, unsigned char *data, int length,
	int *actual_length, unsigned int timeout)
{
	int retval = 0;
	struct sync_data* user_data;
	struct libusb_transfer* xfer;

	// Initialize sychronization primitives
	user_data = calloc(1, sizeof(*user_data));
	pthread_mutex_init(&user_data->lock, NULL);
	pthread_cond_init(&user_data->cond, NULL);

	// Submit asynchronous transfer
	xfer = libusb_alloc_transfer(0);
	libusb_fill_bulk_transfer(xfer, dev, endpoint, data, length,
	                          sync_transfer_cb, user_data, timeout);
	libusb_submit_transfer(xfer);

	// wait for completion
	pthread_mutex_lock(&user_data->lock);
	while (!user_data->done)
		pthread_cond_wait(&user_data->cond, &user_data->lock);
	pthread_mutex_unlock(&user_data->lock);
	
	*actual_length = user_data->actual_length;
	if (user_data->status == LIBUSB_TRANSFER_COMPLETED)
		retval = 0;
	else if (user_data->status == LIBUSB_TRANSFER_TIMED_OUT)
		retval = LIBUSB_ERROR_TIMEOUT;
		
	libusb_free_transfer(xfer);

	pthread_cond_destroy(&user_data->cond);
	pthread_mutex_destroy(&user_data->lock);
	free(user_data);

	return retval;
}


LIBUSB_CALL
libusb_device_handle *libusb_open_device_with_vid_pid(libusb_context *ctx,
                                    uint16_t vendor_id, uint16_t product_id)
{
	struct libusb_device_handle* dev;

	if ((vendor_id != USB_ACTIVETWO_VENDOR_ID)
	  ||(product_id !=  USB_ACTIVETWO_PRODUCT_ID))
		return NULL;

	dev = calloc(1, sizeof(*dev));
	init_device(dev, ctx);
	return dev;
}


LIBUSB_CALL
void libusb_close(libusb_device_handle *dev)
{
	destroy_device(dev);
	free(dev);	
}


LIBUSB_CALL
int libusb_set_configuration(libusb_device_handle *dev, int configuration)
{
	(void)dev;
	(void)configuration;
	return 0;
}


LIBUSB_CALL
int libusb_claim_interface(libusb_device_handle *dev, int iface)
{
	(void)dev;
	(void)iface;
	return 0;
}


LIBUSB_CALL
int libusb_release_interface(libusb_device_handle *dev, int iface)
{
	(void)dev;
	(void)iface;
	return 0;
}


#if NO_LIBUSB_INLINE_HELPER
LIBUSB_CALL
void libusb_fill_bulk_transfer(struct libusb_transfer *transfer,
                               libusb_device_handle *devh,
			       uint8_t endpoint, uint8_t *buf, int length,
			       libusb_transfer_cb_fn callback,
			       void *user_data, uint32_t timeout)
{
	transfer->dev_handle = devh;
	transfer->endpoint = endpoint;
	transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
	transfer->timeout = timeout;
	transfer->buffer = buf;
	transfer->length = length;
	transfer->user_data = user_data;
	transfer->callback = callback;
}
#endif //NO_LIBUSB_INLINE_HELPER