File: Effect.R

package info (click to toggle)
effects 4.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,852 kB
  • sloc: makefile: 4
file content (741 lines) | stat: -rw-r--r-- 34,082 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# Effect generic and methods
# John Fox and Sanford Weisberg
# 2012-12-21: Allow for empty cells in factor interactions, S. Weisberg
# 2012-03-05: Added .merMod method for development version of lme4, J. Fox
# 2012-04-06: Added support for lme4.0, J. Fox
# 2013-07-15:  Changed default xlevels and default.levels
# 2013-10-15: Added Effect.default(). J. Fox
# 2013-10-22: fixed bug in Effect.lm() when na.action=na.exclude. J. Fox
# 2013-10-29: code to handle "valid" NAs in factors. J. Fox
# 2013-11-06: fixed bug in Effect.multinom() in construction of effect object
# 2014-03-13: modified Effect.lm() to compute partial residuals. J. Fox
# 2014-05-06: fixed bug in Effect.gls() when cor or var structure depends on variables in the data set. J. Fox
# 2014-08-02: added vcov.=vcov argument to allow other methods of estimating var(coef.estimates)
# 2014-09-25: added KR argument to Effect.mer() and Effect.merMod(). J. Fox
# 2014-12-07: don't assume that pbkrtest is installed. J. Fox
# 2015-03-25: added "family" element to eff objects returned by Effect.lm(). J. Fox
# 2016-02-16: fixed problem in handling terms like polynomials for non-focal predictors. J. Fox
# 2016-03-01: recoded calculation of partial residuals. J. Fox
# 2016-07-19: added checkFormula(). J. Fox
# 2017-08-18: removed default.levels argument. J. Fox
# 2017-08-26: introduced confint list argument, including Scheffe intervals. J. Fox
# 2017-08-29: reintroduce legacy se and confidence.level arguments.
# 2017-09-07: added Effect.svyglm()
# 2017-09-14: no partial residuals for Effect.svyglm()
# 2017-11-03: correct handling of rank deficient models, now using `estimability` package
# 2017-11-22: modified checkFormula to work with clm2 models that don't have a 'formula' argument
# 2017-12-10: Effect.default. Effect.mer, .merMod, .lme, gls have been replaced to use the default.
# 2018-01-22: allow given.values="equal" or given.values="default" 
# 2018-01-25: substitute se for confint arg; make confint a legacy arg
# 2018-05-06: allow for complete=FALSE arg in potential calls to vcov.lm() and vcov.glm.
# 2018-05-13: allow partial residuals to be computed when the x.var is a factor.
# 2018-06-05: Effect.default now makes sure family$aic is 
#             set, for use with non-standard families.
# 2018-06-05: A test has been added to Effect.default to chech if family$variance
#             has one parameter.  If not, the function is stopped and an error is
#             returned.
# 2018-06-12: Fixed bug with vcov in Effect.default
# 2018-06-20: Added a check to Effect.default to handle family args that
#             are character or an unevaluated function
# 2018-10-01: Avoid warnings when testing given.values == "equal" or "default".
# 2018-10-08: transformation argument changed to legacy
# 2018-10-08: new returned value 'link' = family(mod) 
# 2019-04-20: made Effect.default() more robust in fitting fake glm by setting epsilon=Inf.
# 2019-04-20: fixed bug in .set.given.equal() in tests for model class.
# 2019-07-05: clm, clm2 and clmm were not passing threshholds to the fake polr object, now corrected.
# 2019-09-04: handle xlevels=n argument correctly
# 2020-05-22: Removed fixFormula function.  
# 2020-05-27: Added effCoef generic that uses the 'insight' package to find the formula, coef estimates and vcov for methods supported by insight
# 2020-06-23: Added effSources to gather sources for new regression methods.  
#             Old mechanism of using Effect.method will still work
# 2020-12-02: Allow cov. to be a matrix, not just a function.
# 2022-01-29: Added warning or note about unestimable effects.
# 2022-02-16: Make computation of residual df more robust.
# 2025-07-27: transformation is no longer a "legacy" argument to Effect.lm().

### Non-exported function added 2018-01-22 to generalize given.values to allow for "equal" weighting of factor levels for non-focal predictors.
.set.given.equal <- function(m){
  if(inherits(m, "lm") & !("(Intercept)" %in% names(coef(m))))
      stop("Seting given.vales='equal' requires an intercept in the model formula")
  terms <- terms(m)
  classes <- attr(terms, "dataClasses")
  response <- attr(terms, "response")
  classes <- classes[-response]
  factors <- names(classes)[classes=="factor"]
  out <- NULL
  for (f in factors){
    form <- as.formula(paste( "~", f, collapse=""))
    .m0 <- if(inherits(m, "glm")) 
              {update(m, form, control=glm.control(epsilon=Inf, maxit=1))} else {
    if(inherits(m, "polr"))
              {update(m, form, control=list(maxit=1))} else {
    if(inherits(m, "multinom"))    
              {update(m, form, maxit=0, trace=FALSE)} else
        update(m, form)}}
    names <- colnames(model.matrix(.m0))[-1]
    vals <- rep(1/(length(names)+1), length(names))
    names(vals) <- names
    out <- c(out, vals)
  }
  out
}

# 2020-05-29 Use insight::get_parameters to get a vector of parameter estimates
# for any model supported by insight.

effCoef <- function(mod, ...){UseMethod("effCoef", mod)}
effCoef.default <- function(mod, ...){
  est1 <- insight::get_parameters(mod, ...)
  est <- est1[,2]
  names(est) <- est1[,1]
  est
}

### end of non-exported function

checkFormula <- function(object){
# clm2 does not have a formula,
#  if(inherits(object, "clm2")) formula <- function(x) x$call$location
  if (!inherits(object, "formula")){
    object <- insight::find_formula(object)$conditional
  }
  formula <- as.character(object)
  rhs <- formula[length(formula)]
  res <- regexpr("as.factor\\(|factor\\(|as.ordered\\(|ordered\\(|as.numeric\\(|as.integer\\(",
                 rhs)
  res == -1 || attr(res, "match.length") == 0
}

Effect <- function(focal.predictors, mod, ...){
  if (!checkFormula(mod)) stop("model formula should not contain calls to",
                               "\n  factor(), as.factor(), ordered(), as.ordered(),",
                               " as.numeric(), or as.integer();",
                               "\n  see 'Warnings and Limitations' in ?Effect")
  UseMethod("Effect", mod)
}

# 2017-12-04 new Effect.default that actually works
# 2017-12-07 added Effects.lme, .mer, gls that work

Effect.default <- function(focal.predictors, mod, ..., sources){ 
# 2020/05/23 ... uses 'insight' package, else
# if sources is null, try to construct it
  sources <- if(missing(sources)) effSources(mod) else sources
## formula 
   formula <- if(is.null(sources$formula)) 
     insight::find_formula(mod)$conditional else sources$formula
  # the next line returns the formula if focal.predictors is null
  if(is.null(focal.predictors)) return(formula)
## call
  cl <- if(is.null(sources$call)) {if(isS4(mod)) 
        mod@call else mod$call} else sources$call
  # insert formula into the call
  cl$formula <- formula
## type == 'glm' unless it is set in sources
  type <- if(is.null(sources$type)) "glm" else sources$type
# family
  fam <- try(family(mod), silent=TRUE)
  if(inherits(fam, "try-error")) fam <- NULL
  if(!is.null(sources$family)){fam <- sources$family}
  if(!is.null(fam)){
    fam$aic <- function(...) NULL
    # check to be sure the variance function in the family has one argument only,
    # otherwise this method won't work
    if(!is.null(fam$variance)){
      if(length(formals(fam$variance)) > 1)
        stop("Effect plots are not implemented for families with more than
             one parameter in the variance function (e.g., negative binomial).")}
  }
  cl$family <- fam
# get the coefficient estimates and vcov from sources if present
  coefficients <- if(is.null(sources$coefficients)) 
    effCoef(mod) else sources$coefficients
    vcov <- if(is.null(sources$vcov)) 
      as.matrix(vcov(mod, complete=TRUE)) else sources$vcov
# added 7/5/2019, next line, for models that use polr (e.g, clm, clm2)
  zeta <- if(is.null(sources$zeta)) NULL else sources$zeta
# set control parameters: suggested by Nate TeGrotenhuis
  cl$control <- switch(type,
          glm = glm.control(epsilon=Inf, maxit=1),
          polr = list(maxit=1),
          multinom = c(maxit=1))
  cl$method <- sources$method # NULL except for type=="polr"
  .m <- switch(type,
               glm=match(c("formula", "data", "family", "contrasts",  "subset",
                "control", "offset"), names(cl), 0L),
               polr=match(c("formula", "data", "family", "contrasts",  "subset",
                "control", "method"), names(cl), 0L),
               multinom=match(c("formula", "data", "family", "contrasts", "subset",
                "family", "maxit", "offset"), names(cl), 0L))
  cl <- cl[c(1L, .m)]
#  if(!is.null(fam)) cl$family <- fam
#  if (is.character(cl$family)) 
#    cl$family <- get(cl$family, mode = "function", envir = parent.frame())
#  if (is.function(cl$family)) 
#    cl$family <- family()
  cl[[1L]] <- as.name(type)
# The following eval creates on object of class glm, polr or multinom.  
# These are crated to avoid writing an Effects method for every type of model.  
# The only information used from this "fake" object are the coefficients and 
# the variance-covariance matrix, and these are copied from the original 
# object so Effects plots the right things.
  mod2 <- eval(cl)
  mod2$coefficients <- coefficients
  mod2$vcov <- vcov
  if(!is.null(zeta)) mod2$zeta <- zeta # added 7/5/2019
  if(type == "glm"){
       mod2$weights <- as.vector(with(mod2,
                        prior.weights * (family$mu.eta(linear.predictors)^2 /
                                        family$variance(fitted.values))))}
  class(mod2) <- c("fakeeffmod", class(mod2))
  Effect(focal.predictors, mod2, ...)  # call the glm/polr/multinom method
}

vcov.fakeeffmod <- function(object, ...) object$vcov

## This function removes terms with "|" or "||" in the formula, assuming these
## correspond to random effects.  As of 2020-05-22 this function is never used.

fixFormula <- function (term)
{
  if (!("|" %in% all.names(term)) && !("||" %in% all.names(term)))
    return(term)
  if ((is.call(term) && term[[1]] == as.name("|")) ||
      (is.call(term) && term[[1]] == as.name("||")))
    return(NULL)
  if (length(term) == 2) {
    nb <- fixFormula(term[[2]])
    if (is.null(nb))
      return(NULL)
    term[[2]] <- nb
    return(term)
  }
  nb2 <- fixFormula(term[[2]])
  nb3 <- fixFormula(term[[3]])
  if (is.null(nb2))
    return(nb3)
  if (is.null(nb3))
    return(nb2)
  term[[2]] <- nb2
  term[[3]] <- nb3
  term
}



Effect.lm <- function(focal.predictors, mod, xlevels=list(), fixed.predictors,
        vcov. = vcov, se=TRUE,
        residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2),
        x.var=NULL, transformation, ...,
        #legacy arguments:
        given.values, typical, offset, confint, confidence.level, 
        partial.residuals){ 
  
  if (is.numeric(xlevels)){
    if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list")
    form <- Effect.default(NULL, mod) #returns the fixed-effects formula
    terms <- attr(terms(form), "term.labels")
    predictors <- all.vars(parse(text=terms))
    xlevs <- list()
    for (pred in predictors){
      xlevs[[pred]] <- xlevels
    }
    xlevels <- xlevs
  }
  
  if (!missing(partial.residuals)) residuals <- partial.residuals
  partial.residuals <- residuals
  if (missing(transformation)) 
    transformation <- list(link = family(mod)$linkfun, 
                           inverse = family(mod)$linkinv)
  if (missing(fixed.predictors)) fixed.predictors <- NULL
  fixed.predictors <- applyDefaults(fixed.predictors,
                                    list(given.values=NULL, typical=mean,
                                         apply.typical.to.factors=FALSE, offset=mean),
                                    arg="fixed.predictors")
  if (missing(given.values)) given.values <- fixed.predictors$given.values
# new 1/22/18 to allow for automatical equal weighting of factor levels
  if(!is.null(given.values)){
   if (given.values[1] == "default") given.values <- NULL
   if (given.values[1] == "equal") given.values <- .set.given.equal(mod)}
# end new code
  if (missing(typical)) typical <- fixed.predictors$typical
  if (missing(offset)) offset <- fixed.predictors$offset
  apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors
  if (!missing(confint)) se <- confint
  confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"),
                           onFALSE=list(compute=FALSE, level=.95, type="pointwise"),
                           arg="se")
  se <- confint$compute
  if (missing(confidence.level)) confidence.level <- confint$level
  confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe"))
  default.levels <- NULL # just for backwards compatibility
  data <- if (partial.residuals){
    all.vars <- all.vars(formula(mod))
    expand.model.frame(mod, all.vars)[, all.vars]
  }
  else NULL
  if (!is.null(given.values) && !all(which <- names(given.values) %in% names(coef(mod))))
    stop("given.values (", names(given.values[!which]), ") not in the model")
  off <- if (is.numeric(offset) && length(offset) == 1) offset
  else if (is.function(offset)) {
    mod.off <- model.offset(model.frame(mod))
    if (is.null(mod.off)) 0 else offset(mod.off)
  }
  else stop("offset must be a function or a number")
  formula.rhs <- formula(mod)[[3]]
  if (!missing(x.var)){
    if (!is.numeric(x.var)) {
      x.var.name <- x.var
      x.var <- which(x.var == focal.predictors)
    }
    if (length(x.var) == 0) stop("'", x.var.name, "' is not among the focal predictors")
    if (length(x.var) > 1) stop("x.var argument must be of length 1")
  }
  model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs,
                                    partial.residuals=partial.residuals, quantiles=quantiles, x.var=x.var, data=data, typical=typical)
  excluded.predictors <- model.components$excluded.predictors
  predict.data <- model.components$predict.data
  predict.data.all.rounded <- predict.data.all <- if (partial.residuals) na.omit(data[, all.vars(formula(mod))]) else NULL
  factor.levels <- model.components$factor.levels
  factor.cols <- model.components$factor.cols
  n.focal <- model.components$n.focal
  x <- model.components$x
  X.mod <- model.components$X.mod
  cnames <- model.components$cnames
  X <- model.components$X
  x.var <- model.components$x.var
  formula.rhs <- formula(mod)[c(1, 3)]
  Terms <- delete.response(terms(mod))
  mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL)
  mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts)
  if (is.null(x.var)) partial.residuals <- FALSE
  factors <- sapply(predict.data, is.factor)
  if (partial.residuals){
    for (predictor in focal.predictors[-x.var]){
      if (!factors[predictor]){
        values <- unique(predict.data[, predictor])
        predict.data.all.rounded[, predictor] <- values[apply(outer(predict.data.all[, predictor], values, function(x, y) (x - y)^2), 1, which.min)]
      }
    }
  }
  mod.matrix.all <- model.matrix(mod)
  wts <- weights(mod)
  if (is.null(wts))
    wts <- rep(1, length(residuals(mod)))
  mod.matrix <- Fixup.model.matrix(mod, mod.matrix, mod.matrix.all,
                                   X.mod, factor.cols, cnames, focal.predictors, 
                                   excluded.predictors, typical, given.values, 
                                   apply.typical.to.factors) 
# 11/3/2017.  Check to see if the model is full rank
  # Compute a basis for the null space, using estimability package
  null.basis <- estimability::nonest.basis(mod)  # returns basis for null space
  # check to see if each row of mod.matrix is estimable
  is.estimable <- estimability::is.estble(mod.matrix, null.basis) # TRUE if effect is estimable else FALSE
  if (!any(is.estimable)) {
    warning("none of the values of the ",
                               paste(focal.predictors, collapse="*"),
                               " effect are estimable")
  } else if ((n.not.estimable <- sum(!is.estimable)) > 0) {
    message("Note:\n  ", n.not.estimable,
            if (n.not.estimable > 1) " values" else " value",
            " in the ",  paste(focal.predictors, collapse="*"),
            " effect are not estimable")
    }
    # substitute 0 for NA in coef vector and compute effects
  scoef <- ifelse(is.na(mod$coefficients), 0L, mod$coefficients)
  effect <- off + mod.matrix %*% scoef
  effect[!is.estimable] <- NA  # set all non-estimable effects to NA
# end estimability check
  if (partial.residuals){
    res <- na.omit(residuals(mod, type="working"))
    fitted <- na.omit(if (inherits(mod, "glm")) predict(mod, type="link") else predict(mod))
    partial.residuals.range <- range(fitted + res)
  }
  else {
    res <- partial.residuals.range <- NULL
  }
  result <- list(term = paste(focal.predictors, collapse="*"),
                 formula = formula(mod), response = response.name(mod),
                 variables = x, fit = effect, x = predict.data[, 1:n.focal, drop=FALSE],
                 x.all=predict.data.all.rounded[, focal.predictors, drop=FALSE],
                 model.matrix = mod.matrix,
                 data = X,
                 discrepancy = 0, offset=off,
                 residuals=res, partial.residuals.range=partial.residuals.range,
                 x.var=x.var)
  if (se) {
    if (any(family(mod)$family == c("binomial", "poisson"))) {
      z <- if (confidence.type == "pointwise") {
        qnorm(1 - (1 - confidence.level)/2)
      } else {
        p <- length(na.omit(coef(mod)))
        scheffe(confidence.level, p)
      }
    }
    else {
      df.residual <- df.residual(mod)
      if (is.null(df.residual) || is.na(df.residual)) df.residual <- Inf
      z <- if (confidence.type == "pointwise") {
        qt(1 - (1 - confidence.level)/2, df = df.residual)
      } else {
        p <- length(na.omit(coef(mod)))
        scheffe(confidence.level, p, df.residual)
      }
    }
    V <- if(inherits(vcov., "matrix")) vcov. else {
            if(inherits(vcov., "function")) vcov.(mod, complete=FALSE) 
            else stop("vcov. must be a function or matrix")}
    use <- !is.na(mod$coefficients) # new
    # mmat <- mod.matrix[, !is.na(mod$coefficients)] # remove non-cols with NA coeffs
    mmat <- mod.matrix[, use] # remove non-cols with NA coeffs # new
    if (any(is.na(V))) V <- V[use, use] # new
    eff.vcov <- mmat %*% V %*% t(mmat)
    rownames(eff.vcov) <- colnames(eff.vcov) <- NULL
    var <- diag(eff.vcov)
    result$vcov <- eff.vcov
    result$se <- sqrt(var)
    result$se[!is.estimable] <- NA
    result$lower <- effect - z * result$se
    result$upper <- effect + z * result$se
    result$confidence.level <- confidence.level
  }
  if (is.null(transformation$link) && is.null(transformation$inverse)) {
    transformation$link <- I
    transformation$inverse <- I
  }
  result$transformation <- transformation
  result$family <- family(mod)$family
# 2018-10-08 result$family kept to work with legacy code  
  result$link <- family(mod) 
  class(result) <- "eff"
  result
}

Effect.multinom <- function(focal.predictors, mod,
                            xlevels=list(), fixed.predictors,
                            vcov. = vcov, se=TRUE, ...,
                            #legacy arguments:
                            confint, confidence.level, given.values, typical){
  
  if (is.numeric(xlevels)){
    if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list")
    form <- Effect.default(NULL, mod) #returns the fixed-effects formula
    terms <- attr(terms(form), "term.labels")
    predictors <- all.vars(parse(text=terms))
    xlevs <- list()
    for (pred in predictors){
      xlevs[[pred]] <- xlevels
    }
    xlevels <- xlevs
  }
  
  if (missing(fixed.predictors)) fixed.predictors <- NULL
  fixed.predictors <- applyDefaults(fixed.predictors,
                                    list(given.values=NULL, typical=mean),
                                    arg="fixed.predictors")
  if (missing(given.values)) given.values <- fixed.predictors$given.values
  # new 1/22/18 to allow for automatical equal weighting of factor levels
  if(!is.null(given.values)){
    if (given.values[1] == "default") given.values <- NULL
    if (given.values[1] == "equal") given.values <- .set.given.equal(mod)}
  # end new code
  # end new code
  if (missing(typical)) typical <- fixed.predictors$typical
  if (!missing(confint)) se <- confint
  confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"),
                           onFALSE=list(compute=FALSE, level=.95, type="pointwise"),
                           arg="se")
  se <- confint$compute
  if (missing(confidence.level)) confidence.level <- confint$level
  confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe"))
  default.levels <- NULL # just for backwards compatibility
  if (length(mod$lev) < 3) stop("effects for multinomial logit model only available for response levels > 2")
  if (missing(given.values)) given.values <- NULL
  else if (!all(which <- colnames(given.values) %in% names(coef(mod))))
    stop("given.values (", colnames(given.values[!which]),") not in the model")
  formula.rhs <- formula(mod)[c(1, 3)]
  model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical)
  excluded.predictors <- model.components$excluded.predictors
  predict.data <- model.components$predict.data
  factor.levels <- model.components$factor.levels
  factor.cols <- model.components$factor.cols
  #    n.focal <- model.components$n.focal
  x <- model.components$x
  X.mod <- model.components$X.mod
  cnames <- model.components$cnames
  X <- model.components$X
  formula.rhs <- formula(mod)[c(1, 3)]
  Terms <- delete.response(terms(mod))
  mf <- model.frame(Terms, predict.data, xlev = factor.levels)
  mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts)
  X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod),
                           X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values)
  resp.names <- make.names(mod$lev, unique=TRUE)
  resp.names <- c(resp.names[-1], resp.names[1]) # make the last level the reference level
  B <- t(coef(mod))
  V <- if(inherits(vcov., "matrix")) vcov. else {
         if(inherits(vcov., "function")) vcov.(mod) 
         else stop("vcov. must be a function or matrix")}
  m <- ncol(B) + 1
  p <- nrow(B)
  r <- p*(m - 1)
  n <- nrow(X0)
  P <- Logit <- matrix(0, n, m)
  colnames(P) <-  paste("prob.", resp.names, sep="")
  colnames(Logit) <-  paste("logit.", resp.names, sep="")
  if (se){
    z <- if (confidence.type == "pointwise") {
      qnorm(1 - (1 - confidence.level)/2)
    } else {
      scheffe(confidence.level, p)
    }
    Lower.P <- Upper.P <- Lower.logit <- Upper.logit <- SE.P <- SE.logit <- matrix(0, n, m)
    colnames(Lower.logit) <-  paste("L.logit.", resp.names, sep="")
    colnames(Upper.logit) <-  paste("U.logit.", resp.names, sep="")
    colnames(Lower.P) <-  paste("L.prob.", resp.names, sep="")
    colnames(Upper.P) <-  paste("U.prob.", resp.names, sep="")
    colnames(SE.P) <-  paste("se.prob.", resp.names, sep="")
    colnames(SE.logit) <-  paste("se.logit.", resp.names, sep="")
  }
  for (i in 1:n){
    res <- eff.mul(X0[i,], B, se, m, p, r, V) # compute effects
    #        P[i,] <- prob <- res$p # fitted probabilities
    P[i,] <- res$p # fitted probabilities
    Logit[i,] <- logit <- res$logits # fitted logits
    if (se){
      #            SE.P[i,] <- se.p <- res$std.err.p # std. errors of fitted probs
      SE.P[i,] <- res$std.err.p # std. errors of fitted probs
      SE.logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits
      Lower.P[i,] <- logit2p(logit - z*se.logit)
      Upper.P[i,] <- logit2p(logit + z*se.logit)
      Lower.logit[i,] <- logit - z*se.logit
      Upper.logit[i,] <- logit + z*se.logit
    }
  }
  resp.levs <- c(m, 1:(m-1)) # restore the order of the levels
  P <- P[, resp.levs]
  Logit <- Logit[, resp.levs]
  if (se){
    Lower.P <- Lower.P[, resp.levs]
    Upper.P <- Upper.P[, resp.levs]
    Lower.logit <- Lower.logit[, resp.levs]
    Upper.logit <- Upper.logit[, resp.levs]
    SE.P <- SE.P[, resp.levs]
    SE.logit <- SE.logit[, resp.levs]
  }
  result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod),
                 y.levels=mod$lev, variables=x, x=predict.data[, focal.predictors, drop=FALSE],
                 model.matrix=X0, data=X, discrepancy=0, model="multinom",
                 prob=P, logit=Logit)
  if (se) result <- c(result, list(se.prob=SE.P, se.logit=SE.logit,
                                   lower.logit=Lower.logit, upper.logit=Upper.logit,
                                   lower.prob=Lower.P, upper.prob=Upper.P,
                                   confidence.level=confidence.level))
  # find empty cells, if any, and correct
## 11/3/17:  The code until the next comment is surely incorrect, but
## generally harmless.  One must learn if the notion of estimablilty applied
## to multinomial models and figure out the right thing to do
  whichFact <- unlist(lapply(result$variables, function(x) x$is.factor))
  zeroes <- NULL
  if(sum(whichFact) > 1){
    nameFact <- names(whichFact)[whichFact]
    counts <- xtabs(as.formula( paste("~", paste(nameFact, collapse="+"))),
                    model.frame(mod))
    zeroes <- which(counts == 0)
  }
  if(length(zeroes) > 0){
    levs <- expand.grid(lapply(result$variables, function(x) x$levels))
    good <- rep(TRUE, dim(levs)[1])
    for(z in zeroes){
      good <- good &
        apply(levs, 1, function(x) !all(x == levs[z, whichFact]))
    }
    result$prob[!good, ] <- NA
    result$logit[!good, ] <- NA
    if (se){
      result$se.prob[!good, ] <- NA
      result$se.logit[!good, ] <- NA
      result$lower.prob[!good, ] <- NA
      result$upper.prob[!good, ] <- NA
    }
  }
## End of unnecessary code
  class(result) <-'effpoly'
  result
}

Effect.polr <- function(focal.predictors, mod,
                        xlevels=list(), fixed.predictors,
                        vcov.=vcov, se=TRUE, latent=FALSE, ...,
                        #legacy arguments:
                        confint, confidence.level, given.values, typical){
  
  if (is.numeric(xlevels)){
    if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list")
    form <- Effect.default(NULL, mod) #returns the fixed-effects formula
    terms <- attr(terms(form), "term.labels")
    predictors <- all.vars(parse(text=terms))
    xlevs <- list()
    for (pred in predictors){
      xlevs[[pred]] <- xlevels
    }
    xlevels <- xlevs
  }
  
  if (missing(fixed.predictors)) fixed.predictors <- NULL
  fixed.predictors <- applyDefaults(fixed.predictors,
                                    list(given.values=NULL, typical=mean),
                                    arg="fixed.predictors")
  if (missing(given.values)) given.values <- fixed.predictors$given.values
  # new 1/22/18 to allow for automatical equal weighting of factor levels
  # new 1/22/18 to allow for automatical equal weighting of factor levels
  if(!is.null(given.values)){
    if (given.values[1] == "default") given.values <- NULL
    if (given.values[1] == "equal") given.values <- .set.given.equal(mod)}
  # end new code
  if (missing(typical)) typical <- fixed.predictors$typical
  if (!missing(confint)) se <- confint
  confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"),
                           onFALSE=list(compute=FALSE, level=.95, type="pointwise"),
                           arg="se")
  se <- confint$compute
  if (missing(confidence.level)) confidence.level <- confint$level
  confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe"))
  default.levels <- NULL # just for backwards compatibility
  if (mod$method != "logistic") stop('method argument to polr must be "logistic"')
  if (missing(given.values)) given.values <- NULL
  else if (!all(which <- names(given.values) %in% names(coef(mod))))
    stop("given.values (", names(given.values[!which]),") not in the model")
  formula.rhs <- formula(mod)[c(1, 3)]
  model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical)
  excluded.predictors <- model.components$excluded.predictors
  predict.data <- model.components$predict.data
  factor.levels <- model.components$factor.levels
  factor.cols <- model.components$factor.cols
  #    n.focal <- model.components$n.focal
  x <- model.components$x
  X.mod <- model.components$X.mod
  cnames <- model.components$cnames
  X <- model.components$X
  Terms <- delete.response(terms(mod))
  mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL)
  mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts)
  X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod),
                           X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values)
  resp.names <- make.names(mod$lev, unique=TRUE)
  X0 <- X0[,-1, drop=FALSE]
  b <- coef(mod)
  p <- length(b)  # corresponds to p - 1 in the text
  alpha <- - mod$zeta  # intercepts are negatives of thresholds
  z <- if (confidence.type == "pointwise") {
    qnorm(1 - (1 - confidence.level)/2)
  } else {
    scheffe(confidence.level, p + length(alpha))
  }
  result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod),
                 y.levels=mod$lev, variables=x,
                 x=predict.data[, focal.predictors, drop=FALSE],
                 model.matrix=X0, data=X, discrepancy=0, model="polr")
  if (latent){ 
    V <- if(inherits(vcov., "matrix")) vcov.[1:p, 1:p] else {
            if(inherits(vcov., "function")) vcov.(mod)[1:p, 1:p] 
            else stop("vcov. must be a function or matrix")}
    res <- eff.latent(X0, b, V, se)
    result$fit <- res$fit
    if (se){
      result$se <- res$se
      result$lower <- result$fit - z*result$se
      result$upper <- result$fit + z*result$se
      result$confidence.level <- confidence.level
    }
    transformation <- list()
    transformation$link <- I
    transformation$inverse <- I
    result$transformation <- transformation
    result$thresholds <- -alpha
    class(result) <- c("efflatent", "eff")
    return(result)
  }
  m <- length(alpha) + 1
  r <- m + p - 1
  indices <- c((p+1):r, 1:p)
  V <- if(inherits(vcov., "matrix")) vcov.[indices, indices] else {
         if(inherits(vcov., "function")) vcov.(mod)[indices, indices] 
         else stop("vcov. must be a function or matrix")}  
  for (j in 1:(m-1)){  # fix up the signs of the covariances
    V[j,] <- -V[j,]  #  for the intercepts
    V[,j] <- -V[,j]}
  n <- nrow(X0)
  P <- Logit <- matrix(0, n, m)
  colnames(P) <-  paste("prob.", resp.names, sep="")
  colnames(Logit) <-  paste("logit.", resp.names, sep="")
  if (se){
    Lower.logit <- Upper.logit <- Lower.P <- Upper.P <- SE.P <- SE.Logit <- matrix(0, n, m)
    colnames(Lower.logit) <-  paste("L.logit.", resp.names, sep="")
    colnames(Upper.logit) <-  paste("U.logit.", resp.names, sep="")
    colnames(Lower.P) <-  paste("L.prob.", resp.names, sep="")
    colnames(Upper.P) <-  paste("U.prob.", resp.names, sep="")
    colnames(SE.P) <-  paste("se.prob.", resp.names, sep="")
    colnames(SE.Logit) <-  paste("se.logit.", resp.names, sep="")
  }
  for (i in 1:n){
    res <- eff.polr(X0[i,], b, alpha, V, m, r, se) # compute effects
    P[i,] <- res$p # fitted probabilities
    Logit[i,] <- logit <- res$logits # fitted logits
    if (se){
      SE.P[i,] <- res$std.err.p # std. errors of fitted probs
      SE.Logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits
      Lower.P[i,] <- logit2p(logit - z*se.logit)
      Upper.P[i,] <- logit2p(logit + z*se.logit)
      Lower.logit[i,] <- logit - z*se.logit
      Upper.logit[i,] <- logit + z*se.logit
    }
  }
  result$prob <- P
  result$logit <- Logit
  if (se) result <- c(result,
                      list(se.prob=SE.P, se.logit=SE.Logit,
                           lower.logit=Lower.logit, upper.logit=Upper.logit,
                           lower.prob=Lower.P, upper.prob=Upper.P,
                           confidence.level=confidence.level))
  class(result) <-'effpoly'
  result
}

# merMod -- included here to allow addtional KR argument
Effect.merMod <- function(focal.predictors, mod, ..., KR=FALSE){
  if (KR && !requireNamespace("pbkrtest", quietly=TRUE)){
    KR <- FALSE
    warning("pbkrtest is not available, KR set to FALSE")}
  fam <- family(mod)
  args <- list(
    family=fam,
    vcov = if (fam$family == "gaussian" && fam$link == "identity" && KR)
      as.matrix(pbkrtest::vcovAdj(mod)) else insight::get_varcov(mod))
  Effect.default(focal.predictors, mod, ..., sources=args)
}

# svyglm
Effect.svyglm <- function(focal.predictors, mod, fixed.predictors, ...){
  Svymean <- function(x){
    svymean(x, design=mod$survey.design)
  }
  ellipses.list <- list(...)
  if ((!is.null(ellipses.list$residuals) && !isFALSE(residuals)) || 
      (!is.null(ellipses.list$partial.residuals) && !isFALSE(ellipses.list$partial.residuals))){
    stop("partial residuals are not available for svyglm models")
  }
  if (missing(fixed.predictors)) fixed.predictors <- NULL
  fixed.predictors <- applyDefaults(fixed.predictors,
                                    list(given.values=NULL, typical=Svymean,
                                         apply.typical.to.factors=TRUE, offset=Svymean),
                                    arg="fixed.predictors")
  typical <- fixed.predictors$typical
  apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors
  offset <- fixed.predictors$offset
  mod$call <- list(mod$call, data=mod$data)
  Effect.lm(focal.predictors, mod, typical=typical,
            apply.typical.to.factors=apply.typical.to.factors, offset=offset, ...)
}