1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
|
# Effect generic and methods
# John Fox and Sanford Weisberg
# 2012-12-21: Allow for empty cells in factor interactions, S. Weisberg
# 2012-03-05: Added .merMod method for development version of lme4, J. Fox
# 2012-04-06: Added support for lme4.0, J. Fox
# 2013-07-15: Changed default xlevels and default.levels
# 2013-10-15: Added Effect.default(). J. Fox
# 2013-10-22: fixed bug in Effect.lm() when na.action=na.exclude. J. Fox
# 2013-10-29: code to handle "valid" NAs in factors. J. Fox
# 2013-11-06: fixed bug in Effect.multinom() in construction of effect object
# 2014-03-13: modified Effect.lm() to compute partial residuals. J. Fox
# 2014-05-06: fixed bug in Effect.gls() when cor or var structure depends on variables in the data set. J. Fox
# 2014-08-02: added vcov.=vcov argument to allow other methods of estimating var(coef.estimates)
# 2014-09-25: added KR argument to Effect.mer() and Effect.merMod(). J. Fox
# 2014-12-07: don't assume that pbkrtest is installed. J. Fox
# 2015-03-25: added "family" element to eff objects returned by Effect.lm(). J. Fox
# 2016-02-16: fixed problem in handling terms like polynomials for non-focal predictors. J. Fox
# 2016-03-01: recoded calculation of partial residuals. J. Fox
# 2016-07-19: added checkFormula(). J. Fox
# 2017-08-18: removed default.levels argument. J. Fox
# 2017-08-26: introduced confint list argument, including Scheffe intervals. J. Fox
# 2017-08-29: reintroduce legacy se and confidence.level arguments.
# 2017-09-07: added Effect.svyglm()
# 2017-09-14: no partial residuals for Effect.svyglm()
# 2017-11-03: correct handling of rank deficient models, now using `estimability` package
# 2017-11-22: modified checkFormula to work with clm2 models that don't have a 'formula' argument
# 2017-12-10: Effect.default. Effect.mer, .merMod, .lme, gls have been replaced to use the default.
# 2018-01-22: allow given.values="equal" or given.values="default"
# 2018-01-25: substitute se for confint arg; make confint a legacy arg
# 2018-05-06: allow for complete=FALSE arg in potential calls to vcov.lm() and vcov.glm.
# 2018-05-13: allow partial residuals to be computed when the x.var is a factor.
# 2018-06-05: Effect.default now makes sure family$aic is
# set, for use with non-standard families.
# 2018-06-05: A test has been added to Effect.default to chech if family$variance
# has one parameter. If not, the function is stopped and an error is
# returned.
# 2018-06-12: Fixed bug with vcov in Effect.default
# 2018-06-20: Added a check to Effect.default to handle family args that
# are character or an unevaluated function
# 2018-10-01: Avoid warnings when testing given.values == "equal" or "default".
# 2018-10-08: transformation argument changed to legacy
# 2018-10-08: new returned value 'link' = family(mod)
# 2019-04-20: made Effect.default() more robust in fitting fake glm by setting epsilon=Inf.
# 2019-04-20: fixed bug in .set.given.equal() in tests for model class.
# 2019-07-05: clm, clm2 and clmm were not passing threshholds to the fake polr object, now corrected.
# 2019-09-04: handle xlevels=n argument correctly
# 2020-05-22: Removed fixFormula function.
# 2020-05-27: Added effCoef generic that uses the 'insight' package to find the formula, coef estimates and vcov for methods supported by insight
# 2020-06-23: Added effSources to gather sources for new regression methods.
# Old mechanism of using Effect.method will still work
# 2020-12-02: Allow cov. to be a matrix, not just a function.
# 2022-01-29: Added warning or note about unestimable effects.
# 2022-02-16: Make computation of residual df more robust.
# 2025-07-27: transformation is no longer a "legacy" argument to Effect.lm().
### Non-exported function added 2018-01-22 to generalize given.values to allow for "equal" weighting of factor levels for non-focal predictors.
.set.given.equal <- function(m){
if(inherits(m, "lm") & !("(Intercept)" %in% names(coef(m))))
stop("Seting given.vales='equal' requires an intercept in the model formula")
terms <- terms(m)
classes <- attr(terms, "dataClasses")
response <- attr(terms, "response")
classes <- classes[-response]
factors <- names(classes)[classes=="factor"]
out <- NULL
for (f in factors){
form <- as.formula(paste( "~", f, collapse=""))
.m0 <- if(inherits(m, "glm"))
{update(m, form, control=glm.control(epsilon=Inf, maxit=1))} else {
if(inherits(m, "polr"))
{update(m, form, control=list(maxit=1))} else {
if(inherits(m, "multinom"))
{update(m, form, maxit=0, trace=FALSE)} else
update(m, form)}}
names <- colnames(model.matrix(.m0))[-1]
vals <- rep(1/(length(names)+1), length(names))
names(vals) <- names
out <- c(out, vals)
}
out
}
# 2020-05-29 Use insight::get_parameters to get a vector of parameter estimates
# for any model supported by insight.
effCoef <- function(mod, ...){UseMethod("effCoef", mod)}
effCoef.default <- function(mod, ...){
est1 <- insight::get_parameters(mod, ...)
est <- est1[,2]
names(est) <- est1[,1]
est
}
### end of non-exported function
checkFormula <- function(object){
# clm2 does not have a formula,
# if(inherits(object, "clm2")) formula <- function(x) x$call$location
if (!inherits(object, "formula")){
object <- insight::find_formula(object)$conditional
}
formula <- as.character(object)
rhs <- formula[length(formula)]
res <- regexpr("as.factor\\(|factor\\(|as.ordered\\(|ordered\\(|as.numeric\\(|as.integer\\(",
rhs)
res == -1 || attr(res, "match.length") == 0
}
Effect <- function(focal.predictors, mod, ...){
if (!checkFormula(mod)) stop("model formula should not contain calls to",
"\n factor(), as.factor(), ordered(), as.ordered(),",
" as.numeric(), or as.integer();",
"\n see 'Warnings and Limitations' in ?Effect")
UseMethod("Effect", mod)
}
# 2017-12-04 new Effect.default that actually works
# 2017-12-07 added Effects.lme, .mer, gls that work
Effect.default <- function(focal.predictors, mod, ..., sources){
# 2020/05/23 ... uses 'insight' package, else
# if sources is null, try to construct it
sources <- if(missing(sources)) effSources(mod) else sources
## formula
formula <- if(is.null(sources$formula))
insight::find_formula(mod)$conditional else sources$formula
# the next line returns the formula if focal.predictors is null
if(is.null(focal.predictors)) return(formula)
## call
cl <- if(is.null(sources$call)) {if(isS4(mod))
mod@call else mod$call} else sources$call
# insert formula into the call
cl$formula <- formula
## type == 'glm' unless it is set in sources
type <- if(is.null(sources$type)) "glm" else sources$type
# family
fam <- try(family(mod), silent=TRUE)
if(inherits(fam, "try-error")) fam <- NULL
if(!is.null(sources$family)){fam <- sources$family}
if(!is.null(fam)){
fam$aic <- function(...) NULL
# check to be sure the variance function in the family has one argument only,
# otherwise this method won't work
if(!is.null(fam$variance)){
if(length(formals(fam$variance)) > 1)
stop("Effect plots are not implemented for families with more than
one parameter in the variance function (e.g., negative binomial).")}
}
cl$family <- fam
# get the coefficient estimates and vcov from sources if present
coefficients <- if(is.null(sources$coefficients))
effCoef(mod) else sources$coefficients
vcov <- if(is.null(sources$vcov))
as.matrix(vcov(mod, complete=TRUE)) else sources$vcov
# added 7/5/2019, next line, for models that use polr (e.g, clm, clm2)
zeta <- if(is.null(sources$zeta)) NULL else sources$zeta
# set control parameters: suggested by Nate TeGrotenhuis
cl$control <- switch(type,
glm = glm.control(epsilon=Inf, maxit=1),
polr = list(maxit=1),
multinom = c(maxit=1))
cl$method <- sources$method # NULL except for type=="polr"
.m <- switch(type,
glm=match(c("formula", "data", "family", "contrasts", "subset",
"control", "offset"), names(cl), 0L),
polr=match(c("formula", "data", "family", "contrasts", "subset",
"control", "method"), names(cl), 0L),
multinom=match(c("formula", "data", "family", "contrasts", "subset",
"family", "maxit", "offset"), names(cl), 0L))
cl <- cl[c(1L, .m)]
# if(!is.null(fam)) cl$family <- fam
# if (is.character(cl$family))
# cl$family <- get(cl$family, mode = "function", envir = parent.frame())
# if (is.function(cl$family))
# cl$family <- family()
cl[[1L]] <- as.name(type)
# The following eval creates on object of class glm, polr or multinom.
# These are crated to avoid writing an Effects method for every type of model.
# The only information used from this "fake" object are the coefficients and
# the variance-covariance matrix, and these are copied from the original
# object so Effects plots the right things.
mod2 <- eval(cl)
mod2$coefficients <- coefficients
mod2$vcov <- vcov
if(!is.null(zeta)) mod2$zeta <- zeta # added 7/5/2019
if(type == "glm"){
mod2$weights <- as.vector(with(mod2,
prior.weights * (family$mu.eta(linear.predictors)^2 /
family$variance(fitted.values))))}
class(mod2) <- c("fakeeffmod", class(mod2))
Effect(focal.predictors, mod2, ...) # call the glm/polr/multinom method
}
vcov.fakeeffmod <- function(object, ...) object$vcov
## This function removes terms with "|" or "||" in the formula, assuming these
## correspond to random effects. As of 2020-05-22 this function is never used.
fixFormula <- function (term)
{
if (!("|" %in% all.names(term)) && !("||" %in% all.names(term)))
return(term)
if ((is.call(term) && term[[1]] == as.name("|")) ||
(is.call(term) && term[[1]] == as.name("||")))
return(NULL)
if (length(term) == 2) {
nb <- fixFormula(term[[2]])
if (is.null(nb))
return(NULL)
term[[2]] <- nb
return(term)
}
nb2 <- fixFormula(term[[2]])
nb3 <- fixFormula(term[[3]])
if (is.null(nb2))
return(nb3)
if (is.null(nb3))
return(nb2)
term[[2]] <- nb2
term[[3]] <- nb3
term
}
Effect.lm <- function(focal.predictors, mod, xlevels=list(), fixed.predictors,
vcov. = vcov, se=TRUE,
residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2),
x.var=NULL, transformation, ...,
#legacy arguments:
given.values, typical, offset, confint, confidence.level,
partial.residuals){
if (is.numeric(xlevels)){
if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list")
form <- Effect.default(NULL, mod) #returns the fixed-effects formula
terms <- attr(terms(form), "term.labels")
predictors <- all.vars(parse(text=terms))
xlevs <- list()
for (pred in predictors){
xlevs[[pred]] <- xlevels
}
xlevels <- xlevs
}
if (!missing(partial.residuals)) residuals <- partial.residuals
partial.residuals <- residuals
if (missing(transformation))
transformation <- list(link = family(mod)$linkfun,
inverse = family(mod)$linkinv)
if (missing(fixed.predictors)) fixed.predictors <- NULL
fixed.predictors <- applyDefaults(fixed.predictors,
list(given.values=NULL, typical=mean,
apply.typical.to.factors=FALSE, offset=mean),
arg="fixed.predictors")
if (missing(given.values)) given.values <- fixed.predictors$given.values
# new 1/22/18 to allow for automatical equal weighting of factor levels
if(!is.null(given.values)){
if (given.values[1] == "default") given.values <- NULL
if (given.values[1] == "equal") given.values <- .set.given.equal(mod)}
# end new code
if (missing(typical)) typical <- fixed.predictors$typical
if (missing(offset)) offset <- fixed.predictors$offset
apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors
if (!missing(confint)) se <- confint
confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"),
onFALSE=list(compute=FALSE, level=.95, type="pointwise"),
arg="se")
se <- confint$compute
if (missing(confidence.level)) confidence.level <- confint$level
confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe"))
default.levels <- NULL # just for backwards compatibility
data <- if (partial.residuals){
all.vars <- all.vars(formula(mod))
expand.model.frame(mod, all.vars)[, all.vars]
}
else NULL
if (!is.null(given.values) && !all(which <- names(given.values) %in% names(coef(mod))))
stop("given.values (", names(given.values[!which]), ") not in the model")
off <- if (is.numeric(offset) && length(offset) == 1) offset
else if (is.function(offset)) {
mod.off <- model.offset(model.frame(mod))
if (is.null(mod.off)) 0 else offset(mod.off)
}
else stop("offset must be a function or a number")
formula.rhs <- formula(mod)[[3]]
if (!missing(x.var)){
if (!is.numeric(x.var)) {
x.var.name <- x.var
x.var <- which(x.var == focal.predictors)
}
if (length(x.var) == 0) stop("'", x.var.name, "' is not among the focal predictors")
if (length(x.var) > 1) stop("x.var argument must be of length 1")
}
model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs,
partial.residuals=partial.residuals, quantiles=quantiles, x.var=x.var, data=data, typical=typical)
excluded.predictors <- model.components$excluded.predictors
predict.data <- model.components$predict.data
predict.data.all.rounded <- predict.data.all <- if (partial.residuals) na.omit(data[, all.vars(formula(mod))]) else NULL
factor.levels <- model.components$factor.levels
factor.cols <- model.components$factor.cols
n.focal <- model.components$n.focal
x <- model.components$x
X.mod <- model.components$X.mod
cnames <- model.components$cnames
X <- model.components$X
x.var <- model.components$x.var
formula.rhs <- formula(mod)[c(1, 3)]
Terms <- delete.response(terms(mod))
mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL)
mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts)
if (is.null(x.var)) partial.residuals <- FALSE
factors <- sapply(predict.data, is.factor)
if (partial.residuals){
for (predictor in focal.predictors[-x.var]){
if (!factors[predictor]){
values <- unique(predict.data[, predictor])
predict.data.all.rounded[, predictor] <- values[apply(outer(predict.data.all[, predictor], values, function(x, y) (x - y)^2), 1, which.min)]
}
}
}
mod.matrix.all <- model.matrix(mod)
wts <- weights(mod)
if (is.null(wts))
wts <- rep(1, length(residuals(mod)))
mod.matrix <- Fixup.model.matrix(mod, mod.matrix, mod.matrix.all,
X.mod, factor.cols, cnames, focal.predictors,
excluded.predictors, typical, given.values,
apply.typical.to.factors)
# 11/3/2017. Check to see if the model is full rank
# Compute a basis for the null space, using estimability package
null.basis <- estimability::nonest.basis(mod) # returns basis for null space
# check to see if each row of mod.matrix is estimable
is.estimable <- estimability::is.estble(mod.matrix, null.basis) # TRUE if effect is estimable else FALSE
if (!any(is.estimable)) {
warning("none of the values of the ",
paste(focal.predictors, collapse="*"),
" effect are estimable")
} else if ((n.not.estimable <- sum(!is.estimable)) > 0) {
message("Note:\n ", n.not.estimable,
if (n.not.estimable > 1) " values" else " value",
" in the ", paste(focal.predictors, collapse="*"),
" effect are not estimable")
}
# substitute 0 for NA in coef vector and compute effects
scoef <- ifelse(is.na(mod$coefficients), 0L, mod$coefficients)
effect <- off + mod.matrix %*% scoef
effect[!is.estimable] <- NA # set all non-estimable effects to NA
# end estimability check
if (partial.residuals){
res <- na.omit(residuals(mod, type="working"))
fitted <- na.omit(if (inherits(mod, "glm")) predict(mod, type="link") else predict(mod))
partial.residuals.range <- range(fitted + res)
}
else {
res <- partial.residuals.range <- NULL
}
result <- list(term = paste(focal.predictors, collapse="*"),
formula = formula(mod), response = response.name(mod),
variables = x, fit = effect, x = predict.data[, 1:n.focal, drop=FALSE],
x.all=predict.data.all.rounded[, focal.predictors, drop=FALSE],
model.matrix = mod.matrix,
data = X,
discrepancy = 0, offset=off,
residuals=res, partial.residuals.range=partial.residuals.range,
x.var=x.var)
if (se) {
if (any(family(mod)$family == c("binomial", "poisson"))) {
z <- if (confidence.type == "pointwise") {
qnorm(1 - (1 - confidence.level)/2)
} else {
p <- length(na.omit(coef(mod)))
scheffe(confidence.level, p)
}
}
else {
df.residual <- df.residual(mod)
if (is.null(df.residual) || is.na(df.residual)) df.residual <- Inf
z <- if (confidence.type == "pointwise") {
qt(1 - (1 - confidence.level)/2, df = df.residual)
} else {
p <- length(na.omit(coef(mod)))
scheffe(confidence.level, p, df.residual)
}
}
V <- if(inherits(vcov., "matrix")) vcov. else {
if(inherits(vcov., "function")) vcov.(mod, complete=FALSE)
else stop("vcov. must be a function or matrix")}
use <- !is.na(mod$coefficients) # new
# mmat <- mod.matrix[, !is.na(mod$coefficients)] # remove non-cols with NA coeffs
mmat <- mod.matrix[, use] # remove non-cols with NA coeffs # new
if (any(is.na(V))) V <- V[use, use] # new
eff.vcov <- mmat %*% V %*% t(mmat)
rownames(eff.vcov) <- colnames(eff.vcov) <- NULL
var <- diag(eff.vcov)
result$vcov <- eff.vcov
result$se <- sqrt(var)
result$se[!is.estimable] <- NA
result$lower <- effect - z * result$se
result$upper <- effect + z * result$se
result$confidence.level <- confidence.level
}
if (is.null(transformation$link) && is.null(transformation$inverse)) {
transformation$link <- I
transformation$inverse <- I
}
result$transformation <- transformation
result$family <- family(mod)$family
# 2018-10-08 result$family kept to work with legacy code
result$link <- family(mod)
class(result) <- "eff"
result
}
Effect.multinom <- function(focal.predictors, mod,
xlevels=list(), fixed.predictors,
vcov. = vcov, se=TRUE, ...,
#legacy arguments:
confint, confidence.level, given.values, typical){
if (is.numeric(xlevels)){
if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list")
form <- Effect.default(NULL, mod) #returns the fixed-effects formula
terms <- attr(terms(form), "term.labels")
predictors <- all.vars(parse(text=terms))
xlevs <- list()
for (pred in predictors){
xlevs[[pred]] <- xlevels
}
xlevels <- xlevs
}
if (missing(fixed.predictors)) fixed.predictors <- NULL
fixed.predictors <- applyDefaults(fixed.predictors,
list(given.values=NULL, typical=mean),
arg="fixed.predictors")
if (missing(given.values)) given.values <- fixed.predictors$given.values
# new 1/22/18 to allow for automatical equal weighting of factor levels
if(!is.null(given.values)){
if (given.values[1] == "default") given.values <- NULL
if (given.values[1] == "equal") given.values <- .set.given.equal(mod)}
# end new code
# end new code
if (missing(typical)) typical <- fixed.predictors$typical
if (!missing(confint)) se <- confint
confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"),
onFALSE=list(compute=FALSE, level=.95, type="pointwise"),
arg="se")
se <- confint$compute
if (missing(confidence.level)) confidence.level <- confint$level
confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe"))
default.levels <- NULL # just for backwards compatibility
if (length(mod$lev) < 3) stop("effects for multinomial logit model only available for response levels > 2")
if (missing(given.values)) given.values <- NULL
else if (!all(which <- colnames(given.values) %in% names(coef(mod))))
stop("given.values (", colnames(given.values[!which]),") not in the model")
formula.rhs <- formula(mod)[c(1, 3)]
model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical)
excluded.predictors <- model.components$excluded.predictors
predict.data <- model.components$predict.data
factor.levels <- model.components$factor.levels
factor.cols <- model.components$factor.cols
# n.focal <- model.components$n.focal
x <- model.components$x
X.mod <- model.components$X.mod
cnames <- model.components$cnames
X <- model.components$X
formula.rhs <- formula(mod)[c(1, 3)]
Terms <- delete.response(terms(mod))
mf <- model.frame(Terms, predict.data, xlev = factor.levels)
mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts)
X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod),
X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values)
resp.names <- make.names(mod$lev, unique=TRUE)
resp.names <- c(resp.names[-1], resp.names[1]) # make the last level the reference level
B <- t(coef(mod))
V <- if(inherits(vcov., "matrix")) vcov. else {
if(inherits(vcov., "function")) vcov.(mod)
else stop("vcov. must be a function or matrix")}
m <- ncol(B) + 1
p <- nrow(B)
r <- p*(m - 1)
n <- nrow(X0)
P <- Logit <- matrix(0, n, m)
colnames(P) <- paste("prob.", resp.names, sep="")
colnames(Logit) <- paste("logit.", resp.names, sep="")
if (se){
z <- if (confidence.type == "pointwise") {
qnorm(1 - (1 - confidence.level)/2)
} else {
scheffe(confidence.level, p)
}
Lower.P <- Upper.P <- Lower.logit <- Upper.logit <- SE.P <- SE.logit <- matrix(0, n, m)
colnames(Lower.logit) <- paste("L.logit.", resp.names, sep="")
colnames(Upper.logit) <- paste("U.logit.", resp.names, sep="")
colnames(Lower.P) <- paste("L.prob.", resp.names, sep="")
colnames(Upper.P) <- paste("U.prob.", resp.names, sep="")
colnames(SE.P) <- paste("se.prob.", resp.names, sep="")
colnames(SE.logit) <- paste("se.logit.", resp.names, sep="")
}
for (i in 1:n){
res <- eff.mul(X0[i,], B, se, m, p, r, V) # compute effects
# P[i,] <- prob <- res$p # fitted probabilities
P[i,] <- res$p # fitted probabilities
Logit[i,] <- logit <- res$logits # fitted logits
if (se){
# SE.P[i,] <- se.p <- res$std.err.p # std. errors of fitted probs
SE.P[i,] <- res$std.err.p # std. errors of fitted probs
SE.logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits
Lower.P[i,] <- logit2p(logit - z*se.logit)
Upper.P[i,] <- logit2p(logit + z*se.logit)
Lower.logit[i,] <- logit - z*se.logit
Upper.logit[i,] <- logit + z*se.logit
}
}
resp.levs <- c(m, 1:(m-1)) # restore the order of the levels
P <- P[, resp.levs]
Logit <- Logit[, resp.levs]
if (se){
Lower.P <- Lower.P[, resp.levs]
Upper.P <- Upper.P[, resp.levs]
Lower.logit <- Lower.logit[, resp.levs]
Upper.logit <- Upper.logit[, resp.levs]
SE.P <- SE.P[, resp.levs]
SE.logit <- SE.logit[, resp.levs]
}
result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod),
y.levels=mod$lev, variables=x, x=predict.data[, focal.predictors, drop=FALSE],
model.matrix=X0, data=X, discrepancy=0, model="multinom",
prob=P, logit=Logit)
if (se) result <- c(result, list(se.prob=SE.P, se.logit=SE.logit,
lower.logit=Lower.logit, upper.logit=Upper.logit,
lower.prob=Lower.P, upper.prob=Upper.P,
confidence.level=confidence.level))
# find empty cells, if any, and correct
## 11/3/17: The code until the next comment is surely incorrect, but
## generally harmless. One must learn if the notion of estimablilty applied
## to multinomial models and figure out the right thing to do
whichFact <- unlist(lapply(result$variables, function(x) x$is.factor))
zeroes <- NULL
if(sum(whichFact) > 1){
nameFact <- names(whichFact)[whichFact]
counts <- xtabs(as.formula( paste("~", paste(nameFact, collapse="+"))),
model.frame(mod))
zeroes <- which(counts == 0)
}
if(length(zeroes) > 0){
levs <- expand.grid(lapply(result$variables, function(x) x$levels))
good <- rep(TRUE, dim(levs)[1])
for(z in zeroes){
good <- good &
apply(levs, 1, function(x) !all(x == levs[z, whichFact]))
}
result$prob[!good, ] <- NA
result$logit[!good, ] <- NA
if (se){
result$se.prob[!good, ] <- NA
result$se.logit[!good, ] <- NA
result$lower.prob[!good, ] <- NA
result$upper.prob[!good, ] <- NA
}
}
## End of unnecessary code
class(result) <-'effpoly'
result
}
Effect.polr <- function(focal.predictors, mod,
xlevels=list(), fixed.predictors,
vcov.=vcov, se=TRUE, latent=FALSE, ...,
#legacy arguments:
confint, confidence.level, given.values, typical){
if (is.numeric(xlevels)){
if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list")
form <- Effect.default(NULL, mod) #returns the fixed-effects formula
terms <- attr(terms(form), "term.labels")
predictors <- all.vars(parse(text=terms))
xlevs <- list()
for (pred in predictors){
xlevs[[pred]] <- xlevels
}
xlevels <- xlevs
}
if (missing(fixed.predictors)) fixed.predictors <- NULL
fixed.predictors <- applyDefaults(fixed.predictors,
list(given.values=NULL, typical=mean),
arg="fixed.predictors")
if (missing(given.values)) given.values <- fixed.predictors$given.values
# new 1/22/18 to allow for automatical equal weighting of factor levels
# new 1/22/18 to allow for automatical equal weighting of factor levels
if(!is.null(given.values)){
if (given.values[1] == "default") given.values <- NULL
if (given.values[1] == "equal") given.values <- .set.given.equal(mod)}
# end new code
if (missing(typical)) typical <- fixed.predictors$typical
if (!missing(confint)) se <- confint
confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"),
onFALSE=list(compute=FALSE, level=.95, type="pointwise"),
arg="se")
se <- confint$compute
if (missing(confidence.level)) confidence.level <- confint$level
confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe"))
default.levels <- NULL # just for backwards compatibility
if (mod$method != "logistic") stop('method argument to polr must be "logistic"')
if (missing(given.values)) given.values <- NULL
else if (!all(which <- names(given.values) %in% names(coef(mod))))
stop("given.values (", names(given.values[!which]),") not in the model")
formula.rhs <- formula(mod)[c(1, 3)]
model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical)
excluded.predictors <- model.components$excluded.predictors
predict.data <- model.components$predict.data
factor.levels <- model.components$factor.levels
factor.cols <- model.components$factor.cols
# n.focal <- model.components$n.focal
x <- model.components$x
X.mod <- model.components$X.mod
cnames <- model.components$cnames
X <- model.components$X
Terms <- delete.response(terms(mod))
mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL)
mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts)
X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod),
X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values)
resp.names <- make.names(mod$lev, unique=TRUE)
X0 <- X0[,-1, drop=FALSE]
b <- coef(mod)
p <- length(b) # corresponds to p - 1 in the text
alpha <- - mod$zeta # intercepts are negatives of thresholds
z <- if (confidence.type == "pointwise") {
qnorm(1 - (1 - confidence.level)/2)
} else {
scheffe(confidence.level, p + length(alpha))
}
result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod),
y.levels=mod$lev, variables=x,
x=predict.data[, focal.predictors, drop=FALSE],
model.matrix=X0, data=X, discrepancy=0, model="polr")
if (latent){
V <- if(inherits(vcov., "matrix")) vcov.[1:p, 1:p] else {
if(inherits(vcov., "function")) vcov.(mod)[1:p, 1:p]
else stop("vcov. must be a function or matrix")}
res <- eff.latent(X0, b, V, se)
result$fit <- res$fit
if (se){
result$se <- res$se
result$lower <- result$fit - z*result$se
result$upper <- result$fit + z*result$se
result$confidence.level <- confidence.level
}
transformation <- list()
transformation$link <- I
transformation$inverse <- I
result$transformation <- transformation
result$thresholds <- -alpha
class(result) <- c("efflatent", "eff")
return(result)
}
m <- length(alpha) + 1
r <- m + p - 1
indices <- c((p+1):r, 1:p)
V <- if(inherits(vcov., "matrix")) vcov.[indices, indices] else {
if(inherits(vcov., "function")) vcov.(mod)[indices, indices]
else stop("vcov. must be a function or matrix")}
for (j in 1:(m-1)){ # fix up the signs of the covariances
V[j,] <- -V[j,] # for the intercepts
V[,j] <- -V[,j]}
n <- nrow(X0)
P <- Logit <- matrix(0, n, m)
colnames(P) <- paste("prob.", resp.names, sep="")
colnames(Logit) <- paste("logit.", resp.names, sep="")
if (se){
Lower.logit <- Upper.logit <- Lower.P <- Upper.P <- SE.P <- SE.Logit <- matrix(0, n, m)
colnames(Lower.logit) <- paste("L.logit.", resp.names, sep="")
colnames(Upper.logit) <- paste("U.logit.", resp.names, sep="")
colnames(Lower.P) <- paste("L.prob.", resp.names, sep="")
colnames(Upper.P) <- paste("U.prob.", resp.names, sep="")
colnames(SE.P) <- paste("se.prob.", resp.names, sep="")
colnames(SE.Logit) <- paste("se.logit.", resp.names, sep="")
}
for (i in 1:n){
res <- eff.polr(X0[i,], b, alpha, V, m, r, se) # compute effects
P[i,] <- res$p # fitted probabilities
Logit[i,] <- logit <- res$logits # fitted logits
if (se){
SE.P[i,] <- res$std.err.p # std. errors of fitted probs
SE.Logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits
Lower.P[i,] <- logit2p(logit - z*se.logit)
Upper.P[i,] <- logit2p(logit + z*se.logit)
Lower.logit[i,] <- logit - z*se.logit
Upper.logit[i,] <- logit + z*se.logit
}
}
result$prob <- P
result$logit <- Logit
if (se) result <- c(result,
list(se.prob=SE.P, se.logit=SE.Logit,
lower.logit=Lower.logit, upper.logit=Upper.logit,
lower.prob=Lower.P, upper.prob=Upper.P,
confidence.level=confidence.level))
class(result) <-'effpoly'
result
}
# merMod -- included here to allow addtional KR argument
Effect.merMod <- function(focal.predictors, mod, ..., KR=FALSE){
if (KR && !requireNamespace("pbkrtest", quietly=TRUE)){
KR <- FALSE
warning("pbkrtest is not available, KR set to FALSE")}
fam <- family(mod)
args <- list(
family=fam,
vcov = if (fam$family == "gaussian" && fam$link == "identity" && KR)
as.matrix(pbkrtest::vcovAdj(mod)) else insight::get_varcov(mod))
Effect.default(focal.predictors, mod, ..., sources=args)
}
# svyglm
Effect.svyglm <- function(focal.predictors, mod, fixed.predictors, ...){
Svymean <- function(x){
svymean(x, design=mod$survey.design)
}
ellipses.list <- list(...)
if ((!is.null(ellipses.list$residuals) && !isFALSE(residuals)) ||
(!is.null(ellipses.list$partial.residuals) && !isFALSE(ellipses.list$partial.residuals))){
stop("partial residuals are not available for svyglm models")
}
if (missing(fixed.predictors)) fixed.predictors <- NULL
fixed.predictors <- applyDefaults(fixed.predictors,
list(given.values=NULL, typical=Svymean,
apply.typical.to.factors=TRUE, offset=Svymean),
arg="fixed.predictors")
typical <- fixed.predictors$typical
apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors
offset <- fixed.predictors$offset
mod$call <- list(mod$call, data=mod$data)
Effect.lm(focal.predictors, mod, typical=typical,
apply.typical.to.factors=apply.typical.to.factors, offset=offset, ...)
}
|