1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
# plot, summary, and print methods for effects package
# John Fox and Jangman Hong
# last modified 2012-11-30 by J. Fox
# 29 June 2011 added grid, rotx and roty arguments to the two plot methods
# by S. Weisberg
# 21 Dec 2012 modest modification of empty cells with crossed factors
# 2013-01-17: Added factor.ci.style arg to plot.eff() and plot.effpoly(). J. Fox
# 2013-01-18: Added CI bars to multiline plots with factor.ci.style="bars"
# 2013-01-19: Renamed 'factor.ci.style' to 'ci.style'. Added a 'none' option
# extended to variate terms if multiline=TRUE, ci.style="bars"
# 2013-01-30: scale arrow "heads" for error bars relative to cex
# 2013-05-31: fixed symbol colors in legends in plot.eff(). J. Fox
# 2013-08-14: fixed bug in restoring warn option. J. Fox
# 2013-08-27: fixed symbols argument for multiline plot in plot.eff(), reported by Ulrike Gromping. J. Fox
# 2013-08-31: fixed handling of ticks.x argument. John
# 2013-09-25: moved plot.eff methods to plot.methods.R for easier work. Michael
# 2013-10-17: added use.splines argument to plot.effpoly. Sandy
# 2025-07-22: fix summary.eff when transformation is inverse rather than direct. John
summary.eff <- function(object, type=c("response", "link"), ...){
effect <- as.vector(object$fit)
trans.effect <- object$transformation$inverse(effect)
check.order <- if (all(order(effect) == order(trans.effect))){
"direct"
} else if (all(order(effect) == order(- trans.effect))){
"inverse"
} else {
"inconsistent"
}
if (check.order == "inconsistent") {
warning("the response transformation appears to be non-monotone")
}
result <- list()
result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n')
result$offset <- object$offset
type <- match.arg(type)
if (type == "response") {
object$fit <- object$transformation$inverse(object$fit)
if (!is.null(object$confidence.level)){
if (check.order == "inverse"){
save.upper <- object$upper
object$upper <- object$transformation$inverse(object$lower)
object$lower <- object$transformation$inverse(save.upper)
} else {
object$lower <- object$transformation$inverse(object$lower)
object$upper <- object$transformation$inverse(object$upper)
}
}
}
result$effect <- array(object$fit,
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
if (!is.null(object$se)){
result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2),
'Percent Confidence Limits\n')
result$lower <- array(object$lower,
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2),
'Percent Confidence Limits\n')
result$upper <- array(object$upper,
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
}
if (object$discrepancy > 1e-3) result$warning <- paste("\nWarning: There is an average discrepancy of",
round(object$discrepancy, 3),
"percent \n in the 'safe' predictions for effect", object$term, '\n')
class(result) <- "summary.eff"
result
}
print.summary.eff <- function(x, ...){
cat(x$header)
if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n")
print(x$effect, ...)
if (!is.null(x$lower)){
cat(x$lower.header)
print(x$lower, ...)
cat(x$upper.header)
print(x$upper, ...)
}
if (!is.null(x$thresholds)){
cat("\nThresholds:\n")
print(x$thresholds, ...)
}
if (!is.null(x$warning)) cat(x$warning)
invisible(x)
}
print.eff <- function(x, type=c("response", "link"), ...){
cat(paste("\n", gsub(":", "*", x$term), 'effect\n'))
if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n")
type <- match.arg(type)
if (type == "response") x$fit <- x$transformation$inverse(x$fit)
table <- array(x$fit,
dim=sapply(x$variables, function(x) length(x$levels)),
dimnames=lapply(x$variables, function(x) x$levels))
print(table, ...)
if (x$discrepancy > 1e-3) cat(paste("\nWarning: There is an average discrepancy of",
round(x$discrepancy, 3),
"percent \n in the 'safe' predictions for effect", x$term, '\n'))
invisible(x)
}
print.efflist <- function(x, ...){
cat(" model: ")
form <- x[[1]]$formula
attributes(form) <- NULL
print(form)
for (effect in names(x)){
print(x[[effect]], ...)
}
invisible(x)
}
summary.efflist <- function(object, ...){
cat(" model: ")
form <- object[[1]]$formula
attributes(form) <- NULL
print(form)
for (effect in names(object)){
print(summary(object[[effect]], ...))
}
invisible(NULL)
}
print.effpoly <- function(x, type=c("probability", "logits"), ...){
type <- match.arg(type)
x.frame <-as.data.frame(x)
n.predictors <- length(names(x$x))
predictors <- names(x.frame)[1:n.predictors]
y.lev <- x$y.lev
ylevel.names <- make.names(paste("prob",y.lev))
colnames(x$prob) <- colnames(x$logit) <- ylevel.names
y.categories <- matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev))
for (i in 1:length(y.lev)){
level <- which(colnames(x$prob)[i] == ylevel.names)
y.categories[,i] <- rep(y.lev[level], length(y.categories[,i]))
}
y.categories <- as.vector(y.categories)
y.categories <- factor(y.categories)
for (i in 1:length(y.lev)){
cat(paste("\n", gsub(":", "*", x$term), " effect (", type,") for ", y.lev[i], "\n", sep=""))
table <- array(if (type == "probability") {x$prob[y.categories==y.lev[i]]}
else {x$logit[y.categories==y.lev[i]]},
dim=sapply(x$variables, function(x) length(x$levels)),
dimnames=lapply(x$variables, function(x) x$levels))
print(table, ...)
}
if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of",
round(x$discrepancy, 2),
"percent \n in the 'safe' predictions for effect", x$term, '\n'))
invisible(x)
}
summary.effpoly <- function(object, type=c("probability", "logits"), ...){
type <- match.arg(type)
x.frame <-as.data.frame(object)
n.predictors <- length(names(object$x))
predictors <- names(x.frame)[1:n.predictors]
y.lev <- object$y.lev
ylevel.names <- make.names(paste("prob",y.lev))
colnames(object$prob) <- colnames(object$logit) <-
colnames(object$lower.logit) <- colnames(object$upper.logit) <-
colnames(object$lower.prob) <- colnames(object$upper.prob)<- ylevel.names
y.categories <-matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev))
for (i in 1:length(y.lev)){
level <- which(colnames(object$prob)[i] == ylevel.names)
y.categories[,i] <- rep(y.lev[level], length(y.categories[,i]))
}
y.categories <- as.vector(y.categories)
y.categories <- factor(y.categories)
for (i in 1:length(y.lev)){
cat(paste("\n", gsub(":", "*", object$term), " effect (" , type, ") for ", y.lev[i], "\n", sep=""))
table <- array(if (type == "probability") {object$prob[y.categories==y.lev[i]]}
else {object$logit[y.categories==y.lev[i]]},
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
print(table, ...)
}
if (is.null(object$confidence.level)) return(invisible(NULL))
for (i in 1:length(y.lev)){
cat(paste("\n", 'Lower', object$confidence.level*100, 'Percent Confidence Limits for'
, y.lev[i],'\n'))
table <- if (type == "probability") object$lower.prob else object$lower.logit
table <- array(table[y.categories==y.lev[i]],
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
print(table, ...)
}
for (i in 1:length(y.lev)){
cat(paste("\n", 'Upper', object$confidence.level*100, 'Percent Confidence Limits for'
, y.lev[i],'\n'))
table <- if (type == "probability") object$upper.prob else object$upper.logit
table <- array(table[y.categories==y.lev[i]],
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
print(table, ...)
}
if (object$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of",
round(object$discrepancy, 2),
"percent \n in the 'safe' predictions for effect", object$term, '\n'))
invisible(NULL)
}
print.efflatent <- function(x, ...){
cat(paste("\n", gsub(":", "*", x$term), 'effect\n'))
table <- array(x$fit,
dim=sapply(x$variables, function(x) length(x$levels)),
dimnames=lapply(x$variables, function(x) x$levels))
print(table, ...)
cat("\nThresholds:\n")
print(x$thresholds, ...)
if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of",
round(x$discrepancy, 3),
"percent \n in the 'safe' predictions for effect", x$term, '\n'))
invisible(x)
}
summary.efflatent <- function(object, ...){
result <- list()
result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n')
result$effect <- array(object$fit,
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
if (!is.null(object$se)){
result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2),
'Percent Confidence Limits\n')
result$lower <- array(object$lower,
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2),
'Percent Confidence Limits\n')
result$upper <- array(object$upper,
dim=sapply(object$variables, function(x) length(x$levels)),
dimnames=lapply(object$variables, function(x) x$levels))
}
result$thresholds <- object$thresholds
if (object$discrepancy > 0.1) result$warning <- paste("\nWarning: There is an average discrepancy of",
round(object$discrepancy, 3),
"percent \n in the 'safe' predictions for effect", object$term, '\n')
class(result) <- "summary.eff"
result
}
|