File: utilities.R

package info (click to toggle)
effects 4.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,852 kB
  • sloc: makefile: 4
file content (687 lines) | stat: -rw-r--r-- 26,416 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
# utilities and common functions for effects package
# John Fox, Jangman Hong, and Sanford Weisberg

# 7-25-2013 S. Weisberg modified analyze.model and Analyze.model to ignore
#     default.levels, and use xlevels to set default.  Use grid.pretty by default
# 11-09-2013: fixed error message in Analyze.model(), bug reported by Joris Meys. J. Fox
# 2013-10-15: eliminated functions not needed after effect() methods removed. J. Fox
# 2013-10-29: fixed as.data.frame.*() to handle NA levels. J. Fox
# 2014-03-13: modified Fixup.model.matrix() and Analyze.model() to handle partial residuals; 
#     added is.factor.predictor() and is.numeric.predictor(). J. Fox
# 2014-03-14: error message for non-factor, non-numeric predictor
# 2014-07-08: if no numeric predictor, partial residuals suppressed with warning rather than an error
# 2014-10-09: namespace fixes. J. Fox
# 2015-04-08: added setStrip(), restoreStrip(). J. Fox
# 2015-07-07: fixed matchVarName() so that it handles periods in names properly. J. Fox
# 2015-09-10: added a fix for class = 'array' in Analyze.model.  S. Weisberg
# 2016-02-16: fix Analyze.model(), Fixup.model.matrix() to handle non-focal terms like polynomials correctly; clean up code. J. Fox
# 2016-03-01: correct and improve computation of partial residuals
# 2017-07-10: fix warnings about 1 x 1 arrays produced in eff.mul() and eff.polr() in R 3.4.0 (reported by Stefan Th. Gries). J. Fox
# 2017-07-14: added applyDefaults() and isFALSE(). J. Fox
# 2017-07-27: added effectsTheme(); removed setStrip(), restoreStrip(). J. Fox
# 2017-08-08: added .onAttach() to set lattice theme. J. Fox
# 2017-08-26: added scheffe() to compute multipler for Scheffe-type confidence bounds. J. Fox
# 2017-08-29: enhanced applyDefaults() with onFALSE argument. J. Fox
# 2017-09-02: added nice()
# 2017-09-08: small changes to accommodate Effect.svyglm()
# 2017-09-10: added replacement for ticksGrid()
# 2018-05-09: fix typo in startup message
# 2018-05-13: modified Analyze.model() to support partial-residual plots against factors.
# 2018-08-17: modified .onAttach() so that trellis device doesn't open, suggestion of Kurt Hornik.
# 2018-10-06: modified as.data.frame, adding a 'type' argument and deleting the 'transformation' argument, using the mu.eta function from the defining family
# 2018-10-19: added as.data.frame.efflist
# 2018-10-25: as.data.frame.eff() fixed so that deletion of the transformation argument doesn't break plot.eff(). J. Fox
# 2018-12-19: accommodate character and logical predictors. J. Fox
# 2019-08-27: correctly handle logical or character predictor with residuals
# 2019-08-30: further fixes to character and logical predictors
# 2019-10-24: add color options (e.g., for colorblind palette, suggestion of ) to effectsTheme(). J. Fox
# 2019-11-14: change class(x) == "y" to inherits(x, "y")
# 2022-02-18: insure that levels of focal predictor in returned objects are in proper order (bug reported by Christoph Scherber, didn't affect plots or tables).
# 2023-02-19: added levels2dates() and methods. J. Fox (request of Christoph Scherber).
# 2025-07-21: rename to is_factor_predictor() and is_numeric_predictor() to avoid confusion. J. Fox

has.intercept <- function(model, ...) any(names(coefficients(model))=="(Intercept)")

term.names <- function (model, ...) {
  term.names <- gsub(" ", "", labels(terms(model)))
  if (has.intercept(model)) c("(Intercept)", term.names)
  else term.names
}

response.name <- function (model, ...) deparse(attr(terms(model), "variables")[[2]])

mfrow <- function(n, max.plots=0){
  # number of rows and columns for array of n plots
  if (max.plots != 0 & n > max.plots)
    stop(paste("number of plots =",n," exceeds maximum =", max.plots))
  rows <- round(sqrt(n))
  cols <- ceiling(n/rows)
  c(rows, cols)
}

expand.model.frame <- function (model, extras, envir = environment(formula(model)),
                        na.expand = FALSE){  # modified version of R base function
  f <- formula(model)
  data <- eval(model$call$data, envir)
  ff <- foo ~ bar + baz
  if (is.call(extras)) 
    gg <- extras
  else gg <- parse(text = paste("~", paste(extras, collapse = "+")))[[1]]
  ff[[2]] <- f[[2]]
  ff[[3]][[2]] <- f[[3]]
  ff[[3]][[3]] <- gg[[2]]
  if (!na.expand) {
    naa <- model$call$na.action
    subset <- model$call$subset
    rval <- if (is.null(data)) eval(call("model.frame", ff, # modified
                                         subset = subset, na.action = naa), envir)           #  lines
    else eval(call("model.frame", ff, data = data,          #
                   subset = subset, na.action = naa), envir)           #
  }
  else {
    subset <- model$call$subset
    rval <- eval(call("model.frame", ff, data = data, subset = subset, 
                      na.action = I), envir)
    oldmf <- model.frame(model)
    keep <- match(rownames(oldmf), rownames(rval))
    rval <- rval[keep, ]
    class(rval) <- "data.frame"
  }
  return(rval)
}

is.relative <- function(term1, term2, factors) {
  all(!(factors[,term1]&(!factors[,term2])))
}

descendants <- function(term, mod, ...){
  names <- term.names(mod)
  if (has.intercept(mod)) names <- names[-1]
  if(length(names)==1) return(NULL)
  which.term <- which(term == names)
  if (length(which.term) == 0){
    factors <- attr(terms(...), "factors")
    rownames(factors) <- gsub(" ", "", rownames(factors))
    colnames(factors) <- gsub(" ", "", colnames(factors))
    (1:length(names))[sapply(names,
                             function(term2) is.relative(term, term2, factors))]
  }
  else {
    factors <- attr(terms(mod), "factors")
    rownames(factors) <- gsub(" ", "", rownames(factors))
    colnames(factors) <- gsub(" ", "", colnames(factors))
    (1:length(names))[-which.term][sapply(names[-which.term],
                                          function(term2) is.relative(term, term2, factors))]
  }
}

is.high.order.term <- function(term, mod,...){
  0 == length(descendants(term, mod, ...))
}

subscripts <- function(index, dims){
  subs <- function(dims, index){
    dim <- length(dims)
    if (dim == 0) return(NULL)
    cum <- c(1,cumprod(dims))[dim]
    i <- index %/% cum
    if (index %% cum != 0) i <- i + 1
    c(i, subs(dims[-dim], index - (i - 1)*cum))
  }
  rev(subs(dims, index))
}

matrix.to.df <- function(matrix, colclasses){
  opt <- options(warn = -1)
  on.exit(options(opt))
  ncol <- ncol(matrix)
  colnames <- colnames(matrix)
  colclasses[sapply(colclasses, function(x) "integer" %in% x)] <- "numeric"
  result <- vector(mode="list", length=ncol)
  names(result) <- colnames
  for (j in 1:ncol){
    result[[j]] <- matrix[, j]
    class <- colclasses[[colnames[j]]]
    result[[colnames[j]]] <- if ("numeric" %in% class) {
      decChar <- getOption('OutDec')
      if (decChar == '.') as.numeric(result[[colnames[j]]])
      else as.numeric(gsub(decChar, '.', matrix[,j]))
    }
    else if ("ordered" %in% class) ordered(result[[colnames[j]]])
    else if ("factor" %in% class) factor(result[[colnames[j]]]) 
    else result[[colnames[j]]]
  }
  as.data.frame(result)
}

# the following function is a modification of code contributed by Steve Taylor
# as.data.frame rewritten, 2018-10-06
# fixed 2018-10-25 so that plot.eff() isn't broken by the rewrite

as.data.frame.eff <- function(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...){ 
  type <- match.arg(type)
  linkinv <- if (is.null(x$link$linkinv)) I else x$link$linkinv
  linkmu.eta <- if(is.null(x$link$mu.eta)) function(x) NA else x$link$mu.eta
  xx <- x$x
  for (var in names(xx)){
    if (is.factor(xx[[var]])){
      xx[[var]] <- addNA(xx[[var]]) # handle factors with "valid" NA level
    }
  }
  x$x <- xx
  result <- switch(type, 
                   response= { if (is.null(x$se)) 
                     data.frame(x$x, fit=transform(x$fit))
                     else 
                       data.frame(x$x, 
                                  fit=linkinv(x$fit),
                                  se = linkmu.eta(x$fit) * x$se,
                                  lower=linkinv(x$lower), 
                                  upper=linkinv(x$upper))},
                   link = { if (is.null(x$se)) 
                     data.frame(x$x, fit=x$fit)
                     else 
                       data.frame(x$x, fit=x$fit, 
                                  se=x$se, 
                                  lower=x$lower, 
                                  upper= x$upper)})
  attr(result, "type") <- type
  result 
}

as.data.frame.efflist <- function(x, row.names=NULL, optional=TRUE, type, ...){
  lapply(x, as.data.frame, type)
}

as.data.frame.effpoly <- function(x, row.names=NULL, optional=TRUE, ...){
  factors <- sapply(x$variables, function(x) x$is.factor)
  factor.levels <- lapply(x$variables[factors], function(x) x$levels)
  if (!length(factor.levels) == 0){
    factor.names <- names(factor.levels)
    for (fac in factor.names){
      x$x[[fac]] <- factor(x$x[[fac]], levels=factor.levels[[fac]], exclude=NULL)
    }
  }
  result <- data.frame(x$x, x$prob, x$logit)
  if (!is.null(x$confidence.level)) result <- cbind(result,
                                                    x$se.prob, x$se.logit, x$lower.prob, x$upper.prob, x$lower.logit, x$upper.logit)
  result
}

as.data.frame.efflatent <- function(x, row.names=NULL, optional=TRUE, ...){
  xx <- x$x
  for (var in names(xx)){
    if (is.factor(xx$var)){
      xx$var <- addNA(xx$var) # handle factors with "valid" NA level
    }
  }
  x$x <- xx
  if (is.null(x$se)) data.frame(x$x, fit=x$fit)
  else data.frame(x$x, fit=x$fit, se=x$se, lower=x$lower, upper=x$upper)
}

logit2p <- function(logit) 1/(1 + exp(-logit))

p2logit <- function(p) log(p/(1 - p))


lrug <- function(x) {
  if (length(unique(x)) < 0.8 * length(x)) x <- jitter(x)
  grid.segments(x, unit(0, "npc"), x, unit(0.5, "lines"),
                default.units="native")
}

## model.response not generic
model.response.gls <- function(model){
  model.response(model.frame(as.formula(model$call$model), data=eval(model$call$data)))
}

terms.gls <- function(x, ...) terms(formula(x))

## vcov method for eff objects

vcov.eff <- function(object, ...) object$vcov

## [ method for efflist objects

`[.efflist` <- function(x, ...){
  y <- NextMethod("[")
  class(y) <- class(x)
  y
}

### the following functions are for use by Effect() methods

Analyze.model <- function(focal.predictors, mod, xlevels, default.levels=NULL, formula.rhs, 
                          partial.residuals=FALSE, quantiles, x.var=NULL, data=NULL, typical=mean){
  if ((!is.null(mod$nan.action)) && inherits(mod$na.action, "exclude"))
    class(mod$na.action) <- "omit"
  all.predictors <- all.vars(formula.rhs)
  check.vars <- !(focal.predictors %in% all.predictors)
  excluded.predictors <- setdiff(all.predictors, focal.predictors)
  number.bad <- sum(check.vars)
  if (any(check.vars)) {
    message <- if (number.bad == 1) paste("the following predictor is not in the model:", 
                                          focal.predictors[check.vars])
    else paste("the following predictors are not in the model:", 
               paste(focal.predictors[check.vars], collapse=", "))
    stop(message)
  }
  X.mod <- model.matrix(mod)
  cnames <- colnames(X.mod)
  factor.cols <- rep(FALSE, length(cnames))
  names(factor.cols) <- cnames
  for (name in all.predictors){
    if (is_factor_predictor(name, mod)) {
      factor.cols[grep(paste("^", name, sep=""), cnames)] <- TRUE
    }
  }
  factor.cols[grep(":", cnames)] <- FALSE   
  X <- na.omit(expand.model.frame(mod, all.predictors))
  
  which.matrices <- sapply(X, function(x) is.matrix(x) && ncol(x) == 1)
  if (any(which.matrices)){
    nms <- names(which.matrices[which.matrices])
    msg <- if (length(nms) > 1){
      paste("the predictors", paste(nms, collapse=", "), "are one-column matrices that were converted to vectors")
    } else {
      paste("the predictor", nms, "is a one-column matrix that was converted to a vector")
    }
    warning(msg)
    for (nm in nms){
      X[, nm] <- as.vector(X[, nm])
    }
  }
  
  for (name in all.predictors){
    if (is_factor_predictor(name, mod) && is.null(xlevels[[name]])) {
      xlevels[[name]] <- levels(X[, name]) # accomodate logical predictor
    }
  }
  bad <- sapply(X[, all.predictors, drop=FALSE], function(x) !(is.factor(x) || is.numeric(x)))
  if (any(bad)){
    message <- if (sum(bad) == 1) paste("the following predictor isn't a factor, logical, character, or numeric:", 
                                        all.predictors[bad])
    else paste("the following predictors aren't factors, logical, character, or numeric:", 
               paste(all.predictors[bad], collapse=", "))
    stop(message)
  }
  x <- list()
  factor.levels <- list()
  if(length(xlevels)==0 & length(default.levels) == 1L) xlevels <- default.levels
  if(is.numeric(xlevels) & length(xlevels) == 1L){
    levs <- xlevels
    for(name in focal.predictors) xlevels[[name]] <- levs
  }
  for (name in focal.predictors){
    levels <- mod$xlevels[[name]] ## reverted levels <- levels(X[, name]) 
    if(is.null(levels)) levels <- mod$xlevels[[paste("factor(",name,")",sep="")]] ##reverted deleted
    fac <- !is.null(levels)
    if (!fac) {    
      levels <- if (is.null(xlevels[[name]])){
        if (partial.residuals){
          quantile(X[, name], quantiles)
        }
        else{
          #         grid.pretty(range(X[, name]))
          nice(seq(min(X[, name]), max(X[, name]), length.out=5))
        }
      }
      else {
        if(length(xlevels[[name]]) == 1L) { 
          nice(seq(min(X[, name]), max(X[,name]), length=xlevels[[name]]))} else
            xlevels[[name]]}
    }
    else factor.levels[[name]] <- levels
#    x[[name]] <- list(name=name, is.factor=fac, levels=levels)
    x[[name]] <- list(name=name, is.factor=is.factor(X[, name]), levels=levels)
  }
  if (partial.residuals){
    numeric.predictors <- sapply(focal.predictors, function(predictor) is_numeric_predictor(predictor, mod))
    if (is.null(x.var)){
      x.var <- if (any(numeric.predictors)) which(numeric.predictors)[1]
      else 1
    }
    x.var.name <- focal.predictors[x.var]
    if (is.numeric(X[, x.var.name]) && is.null(xlevels[[x.var.name]])){
      x.var.range <- range(X[, focal.predictors[x.var]])
      x[[x.var]][["levels"]] <- seq(from=x.var.range[1], to=x.var.range[2], length=100)
    }
  }
  x.excluded <- list()
  for (name in excluded.predictors){
    levels <- mod$xlevels[[name]] ##reverted levels <- levels(X[, name])
    if (is.logical(X[, name])) levels <- c("FALSE", "TRUE")
    fac <- !is.null(levels)
    level <- if (fac) levels[1] else typical(X[, name])
    if (fac) factor.levels[[name]] <- levels
    x.excluded[[name]] <- list(name=name, is.factor=fac,
                               level=level)
  }
  dims <- sapply(x, function(x) length(x$levels))
  len <- prod(dims)
  n.focal <- length(focal.predictors)
  n.excluded <- length(excluded.predictors)
  n.vars <- n.focal + n.excluded
  predict.data <-matrix('', len, n.vars)
  excluded <- sapply(x.excluded, function(x) x$level)
  for (i in 1:len){
    subs <- subscripts(i, dims)
    for (j in 1:n.focal){
      predict.data[i,j] <- x[[j]]$levels[subs[j]]
    }
    if (n.excluded > 0)
      predict.data[i, (n.focal + 1):n.vars] <- excluded
  }
  colnames(predict.data) <- c(sapply(x, function(x) x$name),
                              sapply(x.excluded, function(x) x$name))
  colclasses <- lapply(X, class)
  colclasses[colclasses == "matrix"] <- "numeric"
  colclasses[colclasses == "array"] <- "numeric"
  predict.data <-  matrix.to.df(predict.data, colclasses=colclasses)
  for (i in 1:length(x)){
    if (x[[i]]$is.factor){
      predict.data[[x[[i]]$name]] <- if (is.ordered(predict.data[[x[[i]]$name]])){
        ordered(predict.data[[x[[i]]$name]], levels=x[[i]]$levels)
      } else {
        factor(predict.data[[x[[i]]$name]], levels=x[[i]]$levels)
      }
    }
  }
  list(predict.data=predict.data, 
       factor.levels=factor.levels, 
       factor.cols=factor.cols, focal.predictors=focal.predictors, n.focal=n.focal,
       excluded.predictors=excluded.predictors, n.excluded=n.excluded,
       x=x, X.mod=X.mod, cnames=cnames, X=X, x.var=x.var)   
}

Fixup.model.matrix <- function(mod, mod.matrix, mod.matrix.all, X.mod,
                               factor.cols, cnames, focal.predictors, excluded.predictors, 
                               typical, given.values, apply.typical.to.factors=FALSE){
  attr(mod.matrix, "assign") <- attr(mod.matrix.all, "assign")
  if (length(excluded.predictors) > 0){
    strangers <- Strangers(mod, focal.predictors, excluded.predictors)
    stranger.cols <-  
      apply(outer(strangers, attr(mod.matrix,'assign'), '=='), 2, any)
  }
  else stranger.cols <- rep(FALSE, ncol(mod.matrix))
  if (has.intercept(mod)) stranger.cols[1] <- TRUE
  if (any(stranger.cols)) {
    facs <- factor.cols & stranger.cols
    covs <- (!factor.cols) & stranger.cols
    if (has.intercept(mod)) covs[1] <- FALSE
    if (any(facs)){ 
      mod.matrix[,facs] <-  matrix(apply(as.matrix(X.mod[,facs]), 2, 
                                         if (apply.typical.to.factors) typical else mean), 
                                   nrow=nrow(mod.matrix), ncol=sum(facs), byrow=TRUE)
    }
    if (!is.null(given.values)){
      stranger.names <- cnames[stranger.cols]
      given <- stranger.names %in% names(given.values)
      if (any(given)) {
        mod.matrix[,stranger.names[given]] <- matrix(given.values[stranger.names[given]], nrow=nrow(mod.matrix), 
                                                     ncol=length(stranger.names[given]), byrow=TRUE)
      } 
    }
    for (name in cnames){
      components <- unlist(strsplit(name, ':'))
      components <- components[components %in% cnames]
      if (length(components) > 1) {
        mod.matrix[,name] <- apply(mod.matrix[,components], 1, prod)
      }
    }
  }
  mod.matrix
}

matchVarName <- function(name, expressions){
  scratch <- "zAMIjw4RN3" # randomly generated string
  name <- gsub("\\.", scratch, name)
  expressions <- gsub("\\.", scratch, as.character(expressions))
  a <- !grepl(paste("[.]+", name, sep=""), expressions)
  b <- !grepl(paste(name, "[.]+", sep=""), expressions)
  c <- grepl(paste("\\b", name, "\\b", sep=""), expressions)
  a & b & c
}

Strangers <- function(mod, focal.predictors, excluded.predictors){
  names <- term.names(mod)
  if (has.intercept(mod)) names <- names[-1]
  sel <- apply(sapply(excluded.predictors, matchVarName, expressions=names), 1, any)
  (1:length(sel))[sel]
}

# the following is used by effect.multinom() and Effect.multinom()

eff.mul <- function(x0, B, se, m, p, r, V){
  mu <- exp(x0 %*% B)
  mu <- mu/(1 + sum(mu))
  mu[m] <- 1 - sum(mu)
  logits <- log(mu/(1 - mu))
  if (!se) return(list(p=mu, logits=logits))
  d <- array(0, c(m, m - 1, p))
  exp.x0.B <- as.vector(exp(x0 %*% B))
  sum.exp.x0.B <- sum(exp.x0.B)
  for (j in 1:(m-1)){
    d[m, j,] <- - exp.x0.B[j]*x0
    for (jj in 1:(m-1)){
      d[j, jj,] <- if (jj != j)
        - exp(as.vector(x0 %*% (B[,jj] + B[,j])))*x0
      else exp.x0.B[j]*(1 + sum.exp.x0.B - exp.x0.B[j])*x0
    }
  }
  d <- d/(1 + sum.exp.x0.B)^2
  V.mu <- rep(0, m)
  for (j in 1:m){
    dd <- as.vector(t(d[j,,]))
    for (s in 1:r){
      for (t in 1:r){
        V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t]
      }
    }
  }
  V.logits <- V.mu/(mu^2 * (1 - mu)^2)
  list(p=mu, std.err.p=sqrt(V.mu), logits=logits,
       std.error.logits=sqrt(V.logits))
}

# the following are used by effect.polr() and Effect.polr()

eff.polr <- function(x0, b, alpha, V, m, r, se){
  eta0 <- as.vector(x0 %*% b)
  mu <- rep(0, m)
  mu[1] <- 1/(1 + exp(alpha[1] + eta0))
  for (j in 2:(m-1)){
    mu[j] <- exp(eta0)*(exp(alpha[j - 1]) - exp(alpha[j]))/
      ((1 + exp(alpha[j - 1] + eta0))*(1 + exp(alpha[j] + eta0)))
  }
  mu[m] <- 1 - sum(mu)
  logits <- log(mu/(1 - mu))
  if (!se) return(list(p=mu, logits=logits))
  d <- matrix(0, m, r)
  d[1, 1] <- - exp(alpha[1] + eta0)/(1 + exp(alpha[1] + eta0))^2
  d[1, m:r] <- - exp(alpha[1] + eta0)*x0/(1 + exp(alpha[1] + eta0))^2
  for (j in 2:(m-1)){
    d[j, j-1] <- exp(alpha[j-1] + eta0)/(1 + exp(alpha[j-1] + eta0))^2
    d[j, j]   <- - exp(alpha[j] + eta0)/(1 + exp(alpha[j] + eta0))^2
    d[j, m:r] <- exp(eta0)*(exp(alpha[j]) - exp(alpha[j-1]))*
      (exp(alpha[j-1] + alpha[j] + 2*eta0) - 1) * x0 /
      (((1 + exp(alpha[j-1] + eta0))^2)*
         ((1 + exp(alpha[j] + eta0))^2))
  }
  d[m, m-1] <- exp(alpha[m-1] + eta0)/(1 + exp(alpha[m-1] + eta0))^2
  d[m, m:r] <- exp(alpha[m-1] + eta0)*x0/(1 + exp(alpha[m-1] + eta0))^2
  V.mu <- rep(0, m)
  for (j in 1:m){
    dd <- d[j,]
    for (s in 1:r){
      for (t in 1:r){
        V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t]
      }
    }
  }
  V.logits <- V.mu/(mu^2 * (1 - mu)^2)
  list(p=mu, std.err.p=sqrt(V.mu), logits=logits,
       std.error.logits=sqrt(V.logits))
}

eff.latent <- function(X0, b, V, se){
  eta <- X0 %*% b
  if (!se) return(list(fit=eta))
  var <- diag(X0 %*% V %*% t(X0))
  list(fit=eta, se=sqrt(var))
}

# determine class of a predictor

# is_factor_predictor <- function(predictor, model) {
#   !is.null(model$xlevels[[predictor]])
# }

is_factor_predictor <- function(predictor, model) {
  predictor %in% names(attr(model.matrix(model), "contrasts"))
}

is_numeric_predictor <- function(predictor, model) {
  is.null(model$xlevels[[predictor]])
}

# custom lattice theme

# effectsTheme <- function(strip.background=list(col=gray(seq(0.95, 0.5, length=3))),
#                          strip.shingle=list(col="black"), clip=list(strip="off"),
#                          superpose.line=list(lwd=c(2, rep(1, 6)))){
#   
#   current <- sapply(c("strip.background", "strip.shingle", "clip", "superpose.line"),
#                     trellis.par.get)
#   result <- list(strip.background=strip.background, strip.shingle=strip.shingle, clip=clip,
#                  superpose.line=superpose.line)
#   attr(result, "current") <- current
#   result
# }

effectsTheme <- function (strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), 
                          strip.shingle = list(col = "black"), clip = list(strip = "off"), 
                          superpose.line = list(lwd = c(2, rep(1, 6))), col){
  car.palette <- c("blue", "magenta", "cyan", "orange", "gray", "green3", "red")
  colorblind.palette <- rgb(red = c(230, 86, 0, 240, 0, 213, 204),
                            green = c(159, 180, 158, 228, 114, 94, 121),
                            blue  = c(0, 233, 115, 66, 178, 0, 167),
                            names = c("orange", "sky.blue", "bluish.green", "yellow", 
                                      "blue", "vermillion", "reddish.purple"),
                            maxColorValue = 255)
  # colorblind palette from https://jfly.uni-koeln.de/color/ (ignoring "black")
  current <- sapply(c("strip.background", "strip.shingle", 
                      "clip", "superpose.line"), lattice::trellis.par.get)
  if (!missing(col)){
    superpose.line$col <- if (col[1] == "colorblind"){
      colorblind.palette
    } else if (col[1] == "car") {
      car.palette
    } else if (col[1] == "R") {
      palette()[-1]
    } else {
      col
    }
  }
  result <- list(strip.background = strip.background, strip.shingle = strip.shingle, 
                 clip = clip, superpose.line = superpose.line)
  attr(result, "current") <- current
  result
}

.onAttach <- function(libname, pkgname){
  if (!"package:lattice" %in% search()){
    lattice::lattice.options(default.theme = effectsTheme)
    packageStartupMessage("lattice theme set by effectsTheme()",
                          "\nSee ?effectsTheme for details.")
  }
  else packageStartupMessage("Use the command",
                             "\n    lattice::trellis.par.set(effectsTheme())",
                             "\n  to customize lattice options for effects plots.",
                             "\nSee ?effectsTheme for details.")
}

# to handle defaults for list-style arguments

applyDefaults <- function(args, defaults, onFALSE, arg=""){
  if (is.null(args)) return(defaults)
  if (isFALSE(args)) {
    if (missing(onFALSE)) return(FALSE)
    else return(onFALSE)
  }
  names <- names(args)
  names <- names[names != ""]
  if (!isTRUE(args) && length(names) != length(args)) warning("unnamed ", arg, " arguments, will be ignored")
  if (isTRUE(args) || is.null(names)) defaults
  else defaults[names] <- args[names]
  as.list(defaults)
}

isFALSE <- function(x){ 
  length(x) == 1 && is.logical(x) && !isTRUE(x)
}

# compute multiplier for Scheffe-type confidence bounds

scheffe <- function(level, p, df=Inf){
  sqrt(p*qf(level, p, df))
}

# function to compute "nice" numbers

nice <- function (x, direction = c("round", "down", "up"), lead.digits = 1) {
  direction <- match.arg(direction)
  if (length(x) > 1){
    result <- sapply(x, nice, direction = direction, lead.digits = lead.digits)
    if (anyDuplicated(result)) result <- nice(x, direction=direction, lead.digits = lead.digits + 1)
    return(result)
  }
  if (x == 0) 
    return(0)
  power.10 <- floor(log(abs(x), 10))
  if (lead.digits > 1) 
    power.10 <- power.10 - lead.digits + 1
  lead.digit <- switch(direction, round = round(abs(x)/10^power.10), 
                       down = floor(abs(x)/10^power.10), up = ceiling(abs(x)/10^power.10))
  sign(x) * lead.digit * 10^power.10
}

ticksGrid <- function(x, y, col=reference.line$col){
  reference.line <- trellis.par.get("reference.line")
  panel.abline(h=y, v=x, col=col, lty=reference.line$lty)
}


# for character and logical predictors

is.factor <- function(x) inherits(x, "factor") || ((is.character(x) || is.logical(x)) && is.vector(x)) 

levels.character <- function(x) {
  levs <- unique(x)
  sort(levs[!is.na(levs)])
}

levels.logical <- function(x) {
  c("FALSE", "TRUE")
}

# to support Date variables

levels2dates <- function(effect, ...){
  UseMethod("levels2dates")
}

levels2dates.eff <- function(effect, predictor, origin, evenly.spaced=TRUE, n, ...){
  levels <- effect$variables[[predictor]]$levels
  if (evenly.spaced) {
    if (missing(n)) n <- length(levels)
    levels <- seq(min(levels), max(levels), length=n)
  }
  as.Date(levels, origin)
}

levels2dates.effpoly <- function(effect, predictor, origin, evenly.spaced=TRUE, n, ...){
  levels2dates.eff(effect, predictor, origin, evenly.spaced, n, ...)
}