File: diff.go

package info (click to toggle)
efm-langserver 0.0.54-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 404 kB
  • sloc: makefile: 58
file content (226 lines) | stat: -rw-r--r-- 5,484 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.package langserver
// Source:
// https://github.com/golang/tools/blob/78b158585360beccadc3faac6e35759f491831f3/internal/lsp/diff/myers/diff.go

package langserver

import (
	"strings"
)

// OpKind is used to denote the type of operation a line represents.
type OpKind int

const (
	// Delete is the operation kind for a line that is present in the input
	// but not in the output.
	Delete OpKind = iota
	// Insert is the operation kind for a line that is new in the output.
	Insert
	// Equal is the operation kind for a line that is the same in the input and
	// output, often used to provide context around edited lines.
	Equal
)

// Sources:
// https://blog.jcoglan.com/2017/02/17/the-myers-diff-algorithm-part-3/
// https://www.codeproject.com/Articles/42279/%2FArticles%2F42279%2FInvestigating-Myers-diff-algorithm-Part-1-of-2

// ComputeEdits computes diff edits from 2 string inputs
func ComputeEdits(_ DocumentURI, before, after string) []TextEdit {
	ops := operations(splitLines(before), splitLines(after))
	edits := make([]TextEdit, 0, len(ops))
	for _, op := range ops {
		switch op.Kind {
		case Delete:
			// Delete: unformatted[i1:i2] is deleted.
			edits = append(edits, TextEdit{Range: Range{
				Start: Position{Line: op.I1, Character: 0},
				End:   Position{Line: op.I2, Character: 0},
			}})
		case Insert:
			// Insert: formatted[j1:j2] is inserted at unformatted[i1:i1].
			if content := strings.Join(op.Content, ""); content != "" {
				edits = append(edits, TextEdit{
					Range: Range{
						Start: Position{Line: op.I1, Character: 0},
						End:   Position{Line: op.I2, Character: 0},
					},
					NewText: content,
				})
			}
		}
	}
	return edits
}

type operation struct {
	Kind    OpKind
	Content []string // content from b
	I1, I2  int      // indices of the line in a
	J1      int      // indices of the line in b, J2 implied by len(Content)
}

// operations returns the list of operations to convert a into b, consolidating
// operations for multiple lines and not including equal lines.
func operations(a, b []string) []*operation {
	if len(a) == 0 && len(b) == 0 {
		return nil
	}

	trace, offset := shortestEditSequence(a, b)
	snakes := backtrack(trace, len(a), len(b), offset)

	M, N := len(a), len(b)

	var i int
	solution := make([]*operation, len(a)+len(b))

	add := func(op *operation, i2, j2 int) {
		if op == nil {
			return
		}
		op.I2 = i2
		if op.Kind == Insert {
			op.Content = b[op.J1:j2]
		}
		solution[i] = op
		i++
	}
	x, y := 0, 0
	for _, snake := range snakes {
		if len(snake) < 2 {
			continue
		}
		var op *operation
		// delete (horizontal)
		for snake[0]-snake[1] > x-y {
			if op == nil {
				op = &operation{
					Kind: Delete,
					I1:   x,
					J1:   y,
				}
			}
			x++
			if x == M {
				break
			}
		}
		add(op, x, y)
		op = nil
		// insert (vertical)
		for snake[0]-snake[1] < x-y {
			if op == nil {
				op = &operation{
					Kind: Insert,
					I1:   x,
					J1:   y,
				}
			}
			y++
		}
		add(op, x, y)
		op = nil
		// equal (diagonal)
		for x < snake[0] {
			x++
			y++
		}
		if x >= M && y >= N {
			break
		}
	}
	return solution[:i]
}

// backtrack uses the trace for the edit sequence computation and returns the
// "snakes" that make up the solution. A "snake" is a single deletion or
// insertion followed by zero or diagonals.
func backtrack(trace [][]int, x, y, offset int) [][]int {
	snakes := make([][]int, len(trace))
	d := len(trace) - 1
	for ; x > 0 && y > 0 && d > 0; d-- {
		V := trace[d]
		if len(V) == 0 {
			continue
		}
		snakes[d] = []int{x, y}

		k := x - y

		var kPrev int
		if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
			kPrev = k + 1
		} else {
			kPrev = k - 1
		}

		x = V[kPrev+offset]
		y = x - kPrev
	}
	if x < 0 || y < 0 {
		return snakes
	}
	snakes[d] = []int{x, y}
	return snakes
}

// shortestEditSequence returns the shortest edit sequence that converts a into b.
func shortestEditSequence(a, b []string) ([][]int, int) {
	M, N := len(a), len(b)
	V := make([]int, 2*(N+M)+1)
	offset := N + M
	trace := make([][]int, N+M+1)

	// Iterate through the maximum possible length of the SES (N+M).
	for d := 0; d <= N+M; d++ {
		copyV := make([]int, len(V))
		// k lines are represented by the equation y = x - k. We move in
		// increments of 2 because end points for even d are on even k lines.
		for k := -d; k <= d; k += 2 {
			// At each point, we either go down or to the right. We go down if
			// k == -d, and we go to the right if k == d. We also prioritize
			// the maximum x value, because we prefer deletions to insertions.
			var x int
			if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
				x = V[k+1+offset] // down
			} else {
				x = V[k-1+offset] + 1 // right
			}

			y := x - k

			// Diagonal moves while we have equal contents.
			for x < M && y < N && a[x] == b[y] {
				x++
				y++
			}

			V[k+offset] = x

			// Return if we've exceeded the maximum values.
			if x == M && y == N {
				// Makes sure to save the state of the array before returning.
				copy(copyV, V)
				trace[d] = copyV
				return trace, offset
			}
		}

		// Save the state of the array.
		copy(copyV, V)
		trace[d] = copyV
	}
	return nil, 0
}

func splitLines(text string) []string {
	lines := strings.SplitAfter(text, "\n")
	if lines[len(lines)-1] == "" {
		lines = lines[:len(lines)-1]
	}
	return lines
}