File: mathstuff.c

package info (click to toggle)
egoboo 2.22-7
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,640 kB
  • ctags: 2,570
  • sloc: ansic: 23,989; makefile: 94; sh: 83
file content (297 lines) | stat: -rw-r--r-- 10,788 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/**> HEADER FILES <**/
#include "mathstuff.h"


// FAKE D3D FUNCTIONS
GLVECTOR vsub(GLVECTOR A, GLVECTOR B)
{
  GLVECTOR tmp;
  tmp.x=A.x-B.x; tmp.y=A.y-B.y; tmp.z=A.z-B.z;
  return(tmp);
}

GLVECTOR Normalize(GLVECTOR vec)
{
  GLVECTOR tmp=vec;
  float len;
  len= (float)sqrt(vec.x*vec.x+vec.y*vec.y+vec.z*vec.z);
  tmp.x/=len;
  tmp.y/=len;
  tmp.z/=len;
  return(tmp);
}

GLVECTOR CrossProduct(GLVECTOR A, GLVECTOR B)
{
  GLVECTOR tmp;
  tmp.x=A.y*B.z-A.z*B.y;
  tmp.y=A.z*B.x-A.x*B.z;
  tmp.z=A.x*B.y-A.y*B.x;
  return(tmp);
}

float DotProduct(GLVECTOR A, GLVECTOR B)
{ return(A.x*B.x+A.y*B.y+A.z*B.z); }

//---------------------------------------------------------------------------------------------
//Math Stuff-----------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------
//inline D3DMATRIX IdentityMatrix()
GLMATRIX IdentityMatrix()
{
        GLMATRIX tmp;

        (tmp)_CNV(0,0)=1; (tmp)_CNV(1,0)=0; (tmp)_CNV(2,0)=0; (tmp)_CNV(3,0)=0;
        (tmp)_CNV(0,1)=0; (tmp)_CNV(1,1)=1; (tmp)_CNV(2,1)=0; (tmp)_CNV(3,1)=0; 
        (tmp)_CNV(0,2)=0; (tmp)_CNV(1,2)=0; (tmp)_CNV(2,2)=1; (tmp)_CNV(3,2)=0; 
        (tmp)_CNV(0,3)=0; (tmp)_CNV(1,3)=0; (tmp)_CNV(2,3)=0; (tmp)_CNV(3,3)=1; 
        return(tmp);
}

//--------------------------------------------------------------------------------------------
//inline D3DMATRIX ZeroMatrix(void)  // initializes matrix to zero
GLMATRIX ZeroMatrix(void)
{
	GLMATRIX ret;
	int i,j;

        for (i=0; i<4; i++)
          for (j=0; j<4; j++)
            (ret)_CNV(i,j)=0;
	return ret;
}

//--------------------------------------------------------------------------------------------
//inline D3DMATRIX MatrixMult(const D3DMATRIX a, const D3DMATRIX b)  
GLMATRIX MatrixMult(const GLMATRIX a, const GLMATRIX b)
{
	GLMATRIX ret = ZeroMatrix();
	int i,j,k;
	
	for (i=0; i<4; i++)
	  for (j=0; j<4; j++)
	    for (k=0; k<4; k++)
	      (ret)_CNV(i,j) += (a)_CNV(k,j) * (b)_CNV(i,k);
	return ret;
}

//--------------------------------------------------------------------------------------------
//D3DMATRIX Translate(const float dx, const float dy, const float dz)
GLMATRIX Translate(const float dx, const float dy, const float dz)
{
	GLMATRIX ret = IdentityMatrix();
	(ret)_CNV(3,0) = dx;
	(ret)_CNV(3,1) = dy;
	(ret)_CNV(3,2) = dz;
	return ret;
}

//--------------------------------------------------------------------------------------------
//D3DMATRIX RotateX(const float rads)
GLMATRIX RotateX(const float rads)
{
	float cosine = (float)cos(rads);
	float sine = (float)sin(rads);
	GLMATRIX ret = IdentityMatrix();
	(ret)_CNV(1,1) = cosine;
	(ret)_CNV(2,2) = cosine;
	(ret)_CNV(1,2) = -sine;
	(ret)_CNV(2,1) = sine;
	return ret;
}

//--------------------------------------------------------------------------------------------
//D3DMATRIX RotateY(const float rads)
GLMATRIX RotateY(const float rads)
{
	float cosine = (float)cos(rads);
	float sine = (float)sin(rads);
	GLMATRIX ret = IdentityMatrix();
	(ret)_CNV(0,0) = cosine;			//0,0
	(ret)_CNV(2,2) = cosine;			//2,2
	(ret)_CNV(0,2) = sine;			//0,2
	(ret)_CNV(2,0) = -sine;			//2,0
	return ret;
}

//--------------------------------------------------------------------------------------------
//D3DMATRIX RotateZ(const float rads)
GLMATRIX RotateZ(const float rads)
{
	float cosine = (float)cos(rads);
	float sine = (float)sin(rads);
	GLMATRIX ret = IdentityMatrix();
	(ret)_CNV(0,0) = cosine;			//0,0
	(ret)_CNV(1,1) = cosine;			//1,1
	(ret)_CNV(0,1) = -sine;			//0,1
	(ret)_CNV(1,0) = sine;			//1,0
	return ret;
}

//--------------------------------------------------------------------------------------------
//D3DMATRIX ScaleXYZ(const float sizex, const float sizey, const float sizez)
GLMATRIX ScaleXYZ(const float sizex, const float sizey, const float sizez)
{
	GLMATRIX ret = IdentityMatrix();
	(ret)_CNV(0,0) = sizex;			//0,0
	(ret)_CNV(1,1) = sizey;			//1,1
	(ret)_CNV(2,2) = sizez;			//2,2
	return ret;
}

//--------------------------------------------------------------------------------------------
/*D3DMATRIX ScaleXYZRotateXYZTranslate(const float sizex, const float sizey, const float sizez,
   unsigned short turnz, unsigned short turnx, unsigned short turny,
   float tx, float ty, float tz)*/
GLMATRIX ScaleXYZRotateXYZTranslate(const float sizex, const float sizey, const float sizez, unsigned short turnz, unsigned short turnx, unsigned short turny, float tx, float ty, float tz)
{
    float cx = turntosin[(turnx+4096)&16383];
    float sx = turntosin[turnx];
    float cy = turntosin[(turny+4096)&16383];
    float sy = turntosin[turny];
    float cz = turntosin[(turnz+4096)&16383];
    float sz = turntosin[turnz];
    float sxsy = sx*sy;
    float cxsy = cx*sy;
    float sxcy = sx*cy;
    float cxcy = cx*cy;
	GLMATRIX ret;
    (ret)_CNV(0,0) = sizex*(cy*cz);			//0,0
    (ret)_CNV(0,1) = sizex*(sxsy*cz+cx*sz);	//0,1
    (ret)_CNV(0,2) = sizex*(-cxsy*cz+sx*sz);	//0,2
    (ret)_CNV(0,3) = 0;						//0,3

    (ret)_CNV(1,0) = sizey*(-cy*sz);			//1,0
    (ret)_CNV(1,1) = sizey*(-sxsy*sz+cx*cz);	//1,1
    (ret)_CNV(1,2) = sizey*(cxsy*sz+sx*cz);	//1,2
    (ret)_CNV(1,3) = 0;						//1,3

    (ret)_CNV(2,0) = sizez*(sy);				//2,0
    (ret)_CNV(2,1) = sizez*(-sxcy);			//2,1
    (ret)_CNV(2,2) = sizez*(cxcy);			//2,2
    (ret)_CNV(2,3) = 0;						//2,3

    (ret)_CNV(3,0) = tx;						//3,0
    (ret)_CNV(3,1) = ty;						//3,1
    (ret)_CNV(3,2) = tz;						//3,2
    (ret)_CNV(3,3) = 1;						//3,3
    return ret;
}

//--------------------------------------------------------------------------------------------
//D3DMATRIX FourPoints(float orix, float oriy, float oriz,
GLMATRIX FourPoints(float orix, float oriy, float oriz,
                     float widx, float widy, float widz,
                     float forx, float fory, float forz,
                     float upx,  float upy,  float upz,
                     float scale)
{
    GLMATRIX tmp;
    widx-=orix;  forx-=orix;  upx-=orix;
widx=-widx;  // HUK
    widy-=oriy;  fory-=oriy;  upy-=oriy;
widy=-widy; // HUK
    widz-=oriz;  forz-=oriz;  upz-=oriz;
widz=-widz; // HUK
    widx=widx*scale;  forx=forx*scale;  upx=upx*scale;
    widy=widy*scale;  fory=fory*scale;  upy=upy*scale;
    widz=widz*scale;  forz=forz*scale;  upz=upz*scale;
    (tmp)_CNV(0,0)=widx;									//0,0
    (tmp)_CNV(0,1)=widy;									//0,1
    (tmp)_CNV(0,2)=widz;									//0,2
    (tmp)_CNV(0,3)=0;										//0,3
    (tmp)_CNV(1,0)=forx;									//1,0
    (tmp)_CNV(1,1)=fory;									//1,1
    (tmp)_CNV(1,2)=forz;									//1,2
    (tmp)_CNV(1,3)=0;										//1,3
    (tmp)_CNV(2,0)=upx;									//2,0
    (tmp)_CNV(2,1)=upy;									//2,1
    (tmp)_CNV(2,2)=upz;									//2,2
    (tmp)_CNV(2,3)=0;									//2,3
    (tmp)_CNV(3,0)=orix;									//3,0
    (tmp)_CNV(3,1)=oriy;									//3,1
    (tmp)_CNV(3,2)=oriz;									//3,2
    (tmp)_CNV(3,3)=1;									//3,3
    return(tmp);
}

//--------------------------------------------------------------------------------------------
// MN This probably should be replaced by a call to gluLookAt, don't see why we need to make our own...
//
//inline D3DMATRIX ViewMatrix(const D3DVECTOR from,      // camera location
GLMATRIX ViewMatrix(const GLVECTOR from,      // camera location
                            const GLVECTOR at,        // camera look-at target
                            const GLVECTOR world_up,  // worlds up, usually 0, 0, 1
                            const float roll)          // clockwise roll around
                                                       //    viewing direction, 
                                                       //    in radians
{
	GLMATRIX view = IdentityMatrix();
	GLVECTOR up, right, view_dir;

	view_dir = Normalize(vsub(at,from));
	right = CrossProduct(world_up, view_dir);
	up = CrossProduct(view_dir, right);
	right = Normalize(right);
	up = Normalize(up);
	(view)_CNV(0,0) = right.x;						//0,0
	(view)_CNV(1,0) = right.y;						//1,0
	(view)_CNV(2,0) = right.z;						//2,0
	(view)_CNV(0,1) = up.x;							//0,1
	(view)_CNV(1,1) = up.y;							//1,1
	(view)_CNV(2,1) = up.z;							//2,1
	(view)_CNV(0,2) = view_dir.x;						//0,2
	(view)_CNV(1,2) = view_dir.y;						//1,2
	(view)_CNV(2,2) = view_dir.z;					//2,2
	(view)_CNV(3,0) = -DotProduct(right, from);		//3,0
	(view)_CNV(3,1) = -DotProduct(up, from);			//3,1
	(view)_CNV(3,2) = -DotProduct(view_dir, from);	//3,2

	if (roll != 0.0f)
	{
		// MatrixMult function shown above
		view = MatrixMult(RotateZ(-roll), view); 
	}

	return view;
}

//--------------------------------------------------------------------------------------------
// MN Again, there is a gl function for this, glFrustum or gluPerspective... does this account for viewport ratio?
//
//inline D3DMATRIX ProjectionMatrix(const float near_plane,     // distance to near clipping plane
GLMATRIX ProjectionMatrix(const float near_plane,     // distance to near clipping plane
                                  const float far_plane,      // distance to far clipping plane
                                  const float fov)            // field of view angle, in radians
{
	float c = (float)cos(fov*0.5);
	float s = (float)sin(fov*0.5);
	float Q = s/(1.0f - near_plane/far_plane);
	GLMATRIX ret = ZeroMatrix();
	(ret)_CNV(0,0) = c;							//0,0
	(ret)_CNV(1,1) = c;							//1,1
	(ret)_CNV(2,2) = Q;							//2,2
	(ret)_CNV(3,2) = -Q*near_plane;				//3,2
	(ret)_CNV(2,3) = s;							//2,3
	return ret;
}


//----------------------------------------------------
// GS - Normally we souldn't this function but I found it in the rendering of the particules.
//
// This is just a MulVectorMatrix for now. The W division and screen size multiplication 
// must be done afterward.
// Isn't tested!!!!
void	TransformVertices( GLMATRIX *pMatrix, GLVECTOR *pSourceV, GLVECTOR *pDestV, Uint32 pNumVertor )
{
	while ( pNumVertor-- )
	{
		pDestV->x = pSourceV->x * pMatrix->v[0] + pSourceV->y * pMatrix->v[4] + pSourceV->z * pMatrix->v[8] + pSourceV->w * pMatrix->v[12];
		pDestV->y = pSourceV->x * pMatrix->v[1] + pSourceV->y * pMatrix->v[5] + pSourceV->z * pMatrix->v[9] + pSourceV->w * pMatrix->v[13];
		pDestV->z = pSourceV->x * pMatrix->v[2] + pSourceV->y * pMatrix->v[6] + pSourceV->z * pMatrix->v[10] + pSourceV->w * pMatrix->v[14];
		pDestV->w = pSourceV->x * pMatrix->v[3] + pSourceV->y * pMatrix->v[7] + pSourceV->z * pMatrix->v[11] + pSourceV->w * pMatrix->v[15];
		pDestV++;
		pSourceV++;
	}
}