1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
// g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp -o benchEigenSolver && ./benchEigenSolver
// options:
// -DBENCH_GMM
// -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3
// -DEIGEN_DONT_VECTORIZE
// -msse2
// -DREPEAT=100
// -DTRIES=10
// -DSCALAR=double
#include <iostream>
#include <Eigen/Core>
#include <Eigen/QR>
#include <bench/BenchUtil.h>
using namespace Eigen;
#ifndef REPEAT
#define REPEAT 1000
#endif
#ifndef TRIES
#define TRIES 4
#endif
#ifndef SCALAR
#define SCALAR float
#endif
typedef SCALAR Scalar;
template <typename MatrixType>
__attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m)
{
int rows = m.rows();
int cols = m.cols();
int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows))));
int saRepeats = stdRepeats * 4;
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
MatrixType a = MatrixType::Random(rows,cols);
SquareMatrixType covMat = a * a.adjoint();
BenchTimer timerSa, timerStd;
Scalar acc = 0;
int r = internal::random<int>(0,covMat.rows()-1);
int c = internal::random<int>(0,covMat.cols()-1);
{
SelfAdjointEigenSolver<SquareMatrixType> ei(covMat);
for (int t=0; t<TRIES; ++t)
{
timerSa.start();
for (int k=0; k<saRepeats; ++k)
{
ei.compute(covMat);
acc += ei.eigenvectors().coeff(r,c);
}
timerSa.stop();
}
}
{
EigenSolver<SquareMatrixType> ei(covMat);
for (int t=0; t<TRIES; ++t)
{
timerStd.start();
for (int k=0; k<stdRepeats; ++k)
{
ei.compute(covMat);
acc += ei.eigenvectors().coeff(r,c);
}
timerStd.stop();
}
}
if (MatrixType::RowsAtCompileTime==Dynamic)
std::cout << "dyn ";
else
std::cout << "fixed ";
std::cout << covMat.rows() << " \t"
<< timerSa.value() * REPEAT / saRepeats << "s \t"
<< timerStd.value() * REPEAT / stdRepeats << "s";
#ifdef BENCH_GMM
if (MatrixType::RowsAtCompileTime==Dynamic)
{
timerSa.reset();
timerStd.reset();
gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols());
gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols());
std::vector<Scalar> eigval(covMat.rows());
eiToGmm(covMat, gmmCovMat);
for (int t=0; t<TRIES; ++t)
{
timerSa.start();
for (int k=0; k<saRepeats; ++k)
{
gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect);
acc += eigvect(r,c);
}
timerSa.stop();
}
// the non-selfadjoint solver does not compute the eigen vectors
// for (int t=0; t<TRIES; ++t)
// {
// timerStd.start();
// for (int k=0; k<stdRepeats; ++k)
// {
// gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect);
// acc += eigvect(r,c);
// }
// timerStd.stop();
// }
std::cout << " | \t"
<< timerSa.value() * REPEAT / saRepeats << "s"
<< /*timerStd.value() * REPEAT / stdRepeats << "s"*/ " na ";
}
#endif
#ifdef BENCH_GSL
if (MatrixType::RowsAtCompileTime==Dynamic)
{
timerSa.reset();
timerStd.reset();
gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols());
gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols());
gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols());
gsl_vector* eigval = gsl_vector_alloc(covMat.rows());
gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows());
gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols());
gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows());
gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows());
eiToGsl(covMat, &gslCovMat);
for (int t=0; t<TRIES; ++t)
{
timerSa.start();
for (int k=0; k<saRepeats; ++k)
{
gsl_matrix_memcpy(gslCopy,gslCovMat);
gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm);
acc += gsl_matrix_get(eigvect,r,c);
}
timerSa.stop();
}
for (int t=0; t<TRIES; ++t)
{
timerStd.start();
for (int k=0; k<stdRepeats; ++k)
{
gsl_matrix_memcpy(gslCopy,gslCovMat);
gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm);
acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c));
}
timerStd.stop();
}
std::cout << " | \t"
<< timerSa.value() * REPEAT / saRepeats << "s \t"
<< timerStd.value() * REPEAT / stdRepeats << "s";
gsl_matrix_free(gslCovMat);
gsl_vector_free(gslCopy);
gsl_matrix_free(eigvect);
gsl_vector_free(eigval);
gsl_matrix_complex_free(eigvectz);
gsl_vector_complex_free(eigvalz);
gsl_eigen_symmv_free(eisymm);
gsl_eigen_nonsymmv_free(einonsymm);
}
#endif
std::cout << "\n";
// make sure the compiler does not optimize too much
if (acc==123)
std::cout << acc;
}
int main(int argc, char* argv[])
{
const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0};
std::cout << "size selfadjoint generic";
#ifdef BENCH_GMM
std::cout << " GMM++ ";
#endif
#ifdef BENCH_GSL
std::cout << " GSL (double + ATLAS) ";
#endif
std::cout << "\n";
for (uint i=0; dynsizes[i]>0; ++i)
benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
benchEigenSolver(Matrix<Scalar,2,2>());
benchEigenSolver(Matrix<Scalar,3,3>());
benchEigenSolver(Matrix<Scalar,4,4>());
benchEigenSolver(Matrix<Scalar,6,6>());
benchEigenSolver(Matrix<Scalar,8,8>());
benchEigenSolver(Matrix<Scalar,12,12>());
benchEigenSolver(Matrix<Scalar,16,16>());
return 0;
}
|