1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/FFT>
template <typename T>
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
using namespace std;
using namespace Eigen;
template < typename T>
complex<long double> promote(complex<T> x) { return complex<long double>((long double)x.real(),(long double)x.imag()); }
complex<long double> promote(float x) { return complex<long double>((long double)x); }
complex<long double> promote(double x) { return complex<long double>((long double)x); }
complex<long double> promote(long double x) { return complex<long double>((long double)x); }
template <typename VT1,typename VT2>
long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
{
long double totalpower=0;
long double difpower=0;
long double pi = acos((long double)-1 );
for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
complex<long double> acc = 0;
long double phinc = (long double)(-2.)*k0* pi / timebuf.size();
for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
}
totalpower += numext::abs2(acc);
complex<long double> x = promote(fftbuf[k0]);
complex<long double> dif = acc - x;
difpower += numext::abs2(dif);
//cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl;
}
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower);
}
template <typename VT1,typename VT2>
long double dif_rmse( const VT1 buf1,const VT2 buf2)
{
long double totalpower=0;
long double difpower=0;
size_t n = (min)( buf1.size(),buf2.size() );
for (size_t k=0;k<n;++k) {
totalpower += (long double)((numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2);
difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
}
return sqrt(difpower/totalpower);
}
enum { StdVectorContainer, EigenVectorContainer };
template<int Container, typename Scalar> struct VectorType;
template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
{
typedef vector<Scalar> type;
};
template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
{
typedef Matrix<Scalar,Dynamic,1> type;
};
template <int Container, typename T>
void test_scalar_generic(int nfft)
{
typedef typename FFT<T>::Complex Complex;
typedef typename FFT<T>::Scalar Scalar;
typedef typename VectorType<Container,Scalar>::type ScalarVector;
typedef typename VectorType<Container,Complex>::type ComplexVector;
FFT<T> fft;
ScalarVector tbuf(nfft);
ComplexVector freqBuf;
for (int k=0;k<nfft;++k)
tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
// make sure it DOESN'T give the right full spectrum answer
// if we've asked for half-spectrum
fft.SetFlag(fft.HalfSpectrum );
fft.fwd( freqBuf,tbuf);
VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
fft.ClearFlag(fft.HalfSpectrum );
fft.fwd( freqBuf,tbuf);
VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
if (nfft&1)
return; // odd FFTs get the wrong size inverse FFT
ScalarVector tbuf2;
fft.inv( tbuf2 , freqBuf);
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
// verify that the Unscaled flag takes effect
ScalarVector tbuf3;
fft.SetFlag(fft.Unscaled);
fft.inv( tbuf3 , freqBuf);
for (int k=0;k<nfft;++k)
tbuf3[k] *= T(1./nfft);
//for (size_t i=0;i<(size_t) tbuf.size();++i)
// cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
VERIFY( T(dif_rmse(tbuf,tbuf3)) < test_precision<T>() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( tbuf2 , freqBuf);
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
}
template <typename T>
void test_scalar(int nfft)
{
test_scalar_generic<StdVectorContainer,T>(nfft);
//test_scalar_generic<EigenVectorContainer,T>(nfft);
}
template <int Container, typename T>
void test_complex_generic(int nfft)
{
typedef typename FFT<T>::Complex Complex;
typedef typename VectorType<Container,Complex>::type ComplexVector;
FFT<T> fft;
ComplexVector inbuf(nfft);
ComplexVector outbuf;
ComplexVector buf3;
for (int k=0;k<nfft;++k)
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
fft.fwd( outbuf , inbuf);
VERIFY( T(fft_rmse(outbuf,inbuf)) < test_precision<T>() );// gross check
fft.inv( buf3 , outbuf);
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv( buf4 , outbuf);
for (int k=0;k<nfft;++k)
buf4[k] *= T(1./nfft);
VERIFY( T(dif_rmse(inbuf,buf4)) < test_precision<T>() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( buf3 , outbuf);
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
}
template <typename T>
void test_complex(int nfft)
{
test_complex_generic<StdVectorContainer,T>(nfft);
test_complex_generic<EigenVectorContainer,T>(nfft);
}
/*
template <typename T,int nrows,int ncols>
void test_complex2d()
{
typedef typename Eigen::FFT<T>::Complex Complex;
FFT<T> fft;
Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
src = Eigen::Matrix<Complex,nrows,ncols>::Random();
//src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
for (int k=0;k<ncols;k++) {
Eigen::Matrix<Complex,nrows,1> tmpOut;
fft.fwd( tmpOut,src.col(k) );
dst2.col(k) = tmpOut;
}
for (int k=0;k<nrows;k++) {
Eigen::Matrix<Complex,1,ncols> tmpOut;
fft.fwd( tmpOut, dst2.row(k) );
dst2.row(k) = tmpOut;
}
fft.fwd2(dst.data(),src.data(),ncols,nrows);
fft.inv2(src2.data(),dst.data(),ncols,nrows);
VERIFY( (src-src2).norm() < test_precision<T>() );
VERIFY( (dst-dst2).norm() < test_precision<T>() );
}
*/
void test_return_by_value(int len)
{
VectorXf in;
VectorXf in1;
in.setRandom( len );
VectorXcf out1,out2;
FFT<float> fft;
fft.SetFlag(fft.HalfSpectrum );
fft.fwd(out1,in);
out2 = fft.fwd(in);
VERIFY( (out1-out2).norm() < test_precision<float>() );
in1 = fft.inv(out1);
VERIFY( (in1-in).norm() < test_precision<float>() );
}
void test_FFTW()
{
CALL_SUBTEST( test_return_by_value(32) );
//CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
#ifdef EIGEN_HAS_FFTWL
CALL_SUBTEST( test_complex<long double>(32) );
CALL_SUBTEST( test_complex<long double>(256) );
CALL_SUBTEST( test_complex<long double>(3*8) );
CALL_SUBTEST( test_complex<long double>(5*32) );
CALL_SUBTEST( test_complex<long double>(2*3*4) );
CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
CALL_SUBTEST( test_scalar<long double>(32) );
CALL_SUBTEST( test_scalar<long double>(45) );
CALL_SUBTEST( test_scalar<long double>(50) );
CALL_SUBTEST( test_scalar<long double>(256) );
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
#endif
}
|