1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
template <int Layout>
void test_cuda_simple_argmax()
{
Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
in.setRandom();
in *= in.constant(100.0);
in(0, 0, 0) = -1000.0;
in(71, 52, 96) = 1000.0;
std::size_t in_bytes = in.size() * sizeof(double);
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
double* d_in;
DenseIndex* d_out_max;
DenseIndex* d_out_min;
cudaMalloc((void**)(&d_in), in_bytes);
cudaMalloc((void**)(&d_out_max), out_bytes);
cudaMalloc((void**)(&d_out_min), out_bytes);
cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
gpu_out_max.device(gpu_device) = gpu_in.argmax();
gpu_out_min.device(gpu_device) = gpu_in.argmin();
assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
cudaFree(d_in);
cudaFree(d_out_max);
cudaFree(d_out_min);
}
template <int DataLayout>
void test_cuda_argmax_dim()
{
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
std::vector<int> dims;
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
for (int dim = 0; dim < 4; ++dim) {
tensor.setRandom();
tensor = (tensor + tensor.constant(0.5)).log();
array<DenseIndex, 3> out_shape;
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
array<DenseIndex, 4> ix;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
if (ix[dim] != 0) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
tensor(ix) = 10.0;
}
}
}
}
std::size_t in_bytes = tensor.size() * sizeof(float);
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
float* d_in;
DenseIndex* d_out;
cudaMalloc((void**)(&d_in), in_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
VERIFY_IS_EQUAL(tensor_arg.size(),
size_t(2*3*5*7 / tensor.dimension(dim)));
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the first index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
}
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
if (ix[dim] != tensor.dimension(dim) - 1) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
tensor(ix) = 20.0;
}
}
}
}
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the last index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
}
cudaFree(d_in);
cudaFree(d_out);
}
}
template <int DataLayout>
void test_cuda_argmin_dim()
{
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
std::vector<int> dims;
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
for (int dim = 0; dim < 4; ++dim) {
tensor.setRandom();
tensor = (tensor + tensor.constant(0.5)).log();
array<DenseIndex, 3> out_shape;
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
array<DenseIndex, 4> ix;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
if (ix[dim] != 0) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
tensor(ix) = -10.0;
}
}
}
}
std::size_t in_bytes = tensor.size() * sizeof(float);
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
float* d_in;
DenseIndex* d_out;
cudaMalloc((void**)(&d_in), in_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
VERIFY_IS_EQUAL(tensor_arg.size(),
2*3*5*7 / tensor.dimension(dim));
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect min to be in the first index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
}
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
if (ix[dim] != tensor.dimension(dim) - 1) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
tensor(ix) = -20.0;
}
}
}
}
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the last index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
}
cudaFree(d_in);
cudaFree(d_out);
}
}
void test_cxx11_tensor_cuda()
{
CALL_SUBTEST_1(test_cuda_simple_argmax<RowMajor>());
CALL_SUBTEST_1(test_cuda_simple_argmax<ColMajor>());
CALL_SUBTEST_2(test_cuda_argmax_dim<RowMajor>());
CALL_SUBTEST_2(test_cuda_argmax_dim<ColMajor>());
CALL_SUBTEST_3(test_cuda_argmin_dim<RowMajor>());
CALL_SUBTEST_3(test_cuda_argmin_dim<ColMajor>());
}
|