1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
typedef Tensor<float, 1>::DimensionPair DimPair;
template<int DataLayout>
void test_cuda_contraction(int m_size, int k_size, int n_size)
{
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
// with these dimensions, the output has 300 * 140 elements, which is
// more than 30 * 1024, which is the number of threads in blocks on
// a 15 SM GK110 GPU
Tensor<float, 2, DataLayout> t_left(m_size, k_size);
Tensor<float, 2, DataLayout> t_right(k_size, n_size);
Tensor<float, 2, DataLayout> t_result(m_size, n_size);
Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size);
Eigen::array<DimPair, 1> dims(DimPair(1, 0));
t_left.setRandom();
t_right.setRandom();
std::size_t t_left_bytes = t_left.size() * sizeof(float);
std::size_t t_right_bytes = t_right.size() * sizeof(float);
std::size_t t_result_bytes = t_result.size() * sizeof(float);
float* d_t_left;
float* d_t_right;
float* d_t_result;
cudaMalloc((void**)(&d_t_left), t_left_bytes);
cudaMalloc((void**)(&d_t_right), t_right_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size));
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size));
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size));
gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
t_result = t_left.contract(t_right, dims);
cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
for (DenseIndex i = 0; i < t_result.size(); i++) {
if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
continue;
}
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
continue;
}
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
<< " vs " << t_result_gpu(i) << std::endl;
assert(false);
}
cudaFree((void*)d_t_left);
cudaFree((void*)d_t_right);
cudaFree((void*)d_t_result);
}
template<int DataLayout>
void test_scalar(int m_size, int k_size, int n_size)
{
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
// with these dimensions, the output has 300 * 140 elements, which is
// more than 30 * 1024, which is the number of threads in blocks on
// a 15 SM GK110 GPU
Tensor<float, 2, DataLayout> t_left(m_size, k_size);
Tensor<float, 2, DataLayout> t_right(k_size, n_size);
Tensor<float, 0, DataLayout> t_result;
Tensor<float, 0, DataLayout> t_result_gpu;
Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1));
t_left.setRandom();
t_right.setRandom();
std::size_t t_left_bytes = t_left.size() * sizeof(float);
std::size_t t_right_bytes = t_right.size() * sizeof(float);
std::size_t t_result_bytes = sizeof(float);
float* d_t_left;
float* d_t_right;
float* d_t_result;
cudaMalloc((void**)(&d_t_left), t_left_bytes);
cudaMalloc((void**)(&d_t_right), t_right_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
gpu_t_left(d_t_left, m_size, k_size);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
gpu_t_right(d_t_right, k_size, n_size);
Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> >
gpu_t_result(d_t_result);
gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
t_result = t_left.contract(t_right, dims);
cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
if (fabs(t_result() - t_result_gpu()) > 1e-4f &&
!Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
std::cout << "mismatch detected: " << t_result()
<< " vs " << t_result_gpu() << std::endl;
assert(false);
}
cudaFree((void*)d_t_left);
cudaFree((void*)d_t_right);
cudaFree((void*)d_t_result);
}
template<int DataLayout>
void test_cuda_contraction_m() {
for (int k = 32; k < 256; k++) {
test_cuda_contraction<ColMajor>(k, 128, 128);
test_cuda_contraction<RowMajor>(k, 128, 128);
}
}
template<int DataLayout>
void test_cuda_contraction_k() {
for (int k = 32; k < 256; k++) {
test_cuda_contraction<ColMajor>(128, k, 128);
test_cuda_contraction<RowMajor>(128, k, 128);
}
}
template<int DataLayout>
void test_cuda_contraction_n() {
for (int k = 32; k < 256; k++) {
test_cuda_contraction<ColMajor>(128, 128, k);
test_cuda_contraction<RowMajor>(128, 128, k);
}
}
template<int DataLayout>
void test_cuda_contraction_sizes() {
int m_sizes[] = { 31, 39, 63, 64, 65,
127, 129, 255, 257 , 511,
512, 513, 1023, 1024, 1025};
int n_sizes[] = { 31, 39, 63, 64, 65,
127, 129, 255, 257, 511,
512, 513, 1023, 1024, 1025};
int k_sizes[] = { 31, 39, 63, 64, 65,
95, 96, 127, 129, 255,
257, 511, 512, 513, 1023,
1024, 1025};
for (int i = 0; i < 15; i++) {
for (int j = 0; j < 15; j++) {
for (int k = 0; k < 17; k++) {
test_cuda_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]);
}
}
}
}
void test_cxx11_tensor_cuda()
{
CALL_SUBTEST_1(test_cuda_contraction<ColMajor>(128, 128, 128));
CALL_SUBTEST_1(test_cuda_contraction<RowMajor>(128, 128, 128));
CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128));
CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128));
CALL_SUBTEST_2(test_cuda_contraction_m<ColMajor>());
CALL_SUBTEST_3(test_cuda_contraction_m<RowMajor>());
CALL_SUBTEST_4(test_cuda_contraction_k<ColMajor>());
CALL_SUBTEST_5(test_cuda_contraction_k<RowMajor>());
CALL_SUBTEST_6(test_cuda_contraction_n<ColMajor>());
CALL_SUBTEST_7(test_cuda_contraction_n<RowMajor>());
CALL_SUBTEST_8(test_cuda_contraction_sizes<ColMajor>());
CALL_SUBTEST_9(test_cuda_contraction_sizes<RowMajor>());
}
|