1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_device
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::RowMajor;
// Context for evaluation on cpu
struct CPUContext {
CPUContext(const Eigen::Tensor<float, 3>& in1, Eigen::Tensor<float, 3>& in2, Eigen::Tensor<float, 3>& out) : in1_(in1), in2_(in2), out_(out), kernel_1d_(2), kernel_2d_(2,2), kernel_3d_(2,2,2) {
kernel_1d_(0) = 3.14f;
kernel_1d_(1) = 2.7f;
kernel_2d_(0,0) = 3.14f;
kernel_2d_(1,0) = 2.7f;
kernel_2d_(0,1) = 0.2f;
kernel_2d_(1,1) = 7.0f;
kernel_3d_(0,0,0) = 3.14f;
kernel_3d_(0,1,0) = 2.7f;
kernel_3d_(0,0,1) = 0.2f;
kernel_3d_(0,1,1) = 7.0f;
kernel_3d_(1,0,0) = -1.0f;
kernel_3d_(1,1,0) = -0.3f;
kernel_3d_(1,0,1) = -0.7f;
kernel_3d_(1,1,1) = -0.5f;
}
const Eigen::DefaultDevice& device() const { return cpu_device_; }
const Eigen::Tensor<float, 3>& in1() const { return in1_; }
const Eigen::Tensor<float, 3>& in2() const { return in2_; }
Eigen::Tensor<float, 3>& out() { return out_; }
const Eigen::Tensor<float, 1>& kernel1d() const { return kernel_1d_; }
const Eigen::Tensor<float, 2>& kernel2d() const { return kernel_2d_; }
const Eigen::Tensor<float, 3>& kernel3d() const { return kernel_3d_; }
private:
const Eigen::Tensor<float, 3>& in1_;
const Eigen::Tensor<float, 3>& in2_;
Eigen::Tensor<float, 3>& out_;
Eigen::Tensor<float, 1> kernel_1d_;
Eigen::Tensor<float, 2> kernel_2d_;
Eigen::Tensor<float, 3> kernel_3d_;
Eigen::DefaultDevice cpu_device_;
};
// Context for evaluation on GPU
struct GPUContext {
GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1, Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2, Eigen::TensorMap<Eigen::Tensor<float, 3> >& out) : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) {
assert(cudaMalloc((void**)(&kernel_1d_), 2*sizeof(float)) == cudaSuccess);
float kernel_1d_val[] = {3.14f, 2.7f};
assert(cudaMemcpy(kernel_1d_, kernel_1d_val, 2*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(cudaMalloc((void**)(&kernel_2d_), 4*sizeof(float)) == cudaSuccess);
float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f};
assert(cudaMemcpy(kernel_2d_, kernel_2d_val, 4*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(cudaMalloc((void**)(&kernel_3d_), 8*sizeof(float)) == cudaSuccess);
float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f};
assert(cudaMemcpy(kernel_3d_, kernel_3d_val, 8*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
}
~GPUContext() {
assert(cudaFree(kernel_1d_) == cudaSuccess);
assert(cudaFree(kernel_2d_) == cudaSuccess);
assert(cudaFree(kernel_3d_) == cudaSuccess);
}
const Eigen::GpuDevice& device() const { return gpu_device_; }
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1() const { return in1_; }
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2() const { return in2_; }
Eigen::TensorMap<Eigen::Tensor<float, 3> >& out() { return out_; }
Eigen::TensorMap<Eigen::Tensor<float, 1> > kernel1d() const { return Eigen::TensorMap<Eigen::Tensor<float, 1> >(kernel_1d_, 2); }
Eigen::TensorMap<Eigen::Tensor<float, 2> > kernel2d() const { return Eigen::TensorMap<Eigen::Tensor<float, 2> >(kernel_2d_, 2, 2); }
Eigen::TensorMap<Eigen::Tensor<float, 3> > kernel3d() const { return Eigen::TensorMap<Eigen::Tensor<float, 3> >(kernel_3d_, 2, 2, 2); }
private:
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1_;
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2_;
Eigen::TensorMap<Eigen::Tensor<float, 3> >& out_;
float* kernel_1d_;
float* kernel_2d_;
float* kernel_3d_;
Eigen::CudaStreamDevice stream_;
Eigen::GpuDevice gpu_device_;
};
// The actual expression to evaluate
template <typename Context>
void test_contextual_eval(Context* context)
{
context->out().device(context->device()) = context->in1() + context->in2() * 3.14f + context->in1().constant(2.718f);
}
template <typename Context>
void test_forced_contextual_eval(Context* context)
{
context->out().device(context->device()) = (context->in1() + context->in2()).eval() * 3.14f + context->in1().constant(2.718f);
}
template <typename Context>
void test_compound_assignment(Context* context)
{
context->out().device(context->device()) = context->in1().constant(2.718f);
context->out().device(context->device()) += context->in1() + context->in2() * 3.14f;
}
template <typename Context>
void test_contraction(Context* context)
{
Eigen::array<std::pair<int, int>, 2> dims;
dims[0] = std::make_pair(1, 1);
dims[1] = std::make_pair(2, 2);
Eigen::array<int, 2> shape(40, 50*70);
Eigen::DSizes<int, 2> indices(0,0);
Eigen::DSizes<int, 2> sizes(40,40);
context->out().reshape(shape).slice(indices, sizes).device(context->device()) = context->in1().contract(context->in2(), dims);
}
template <typename Context>
void test_1d_convolution(Context* context)
{
Eigen::DSizes<int, 3> indices(0,0,0);
Eigen::DSizes<int, 3> sizes(40,49,70);
Eigen::array<int, 1> dims(1);
context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel1d(), dims);
}
template <typename Context>
void test_2d_convolution(Context* context)
{
Eigen::DSizes<int, 3> indices(0,0,0);
Eigen::DSizes<int, 3> sizes(40,49,69);
Eigen::array<int, 2> dims(1,2);
context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel2d(), dims);
}
template <typename Context>
void test_3d_convolution(Context* context)
{
Eigen::DSizes<int, 3> indices(0,0,0);
Eigen::DSizes<int, 3> sizes(39,49,69);
Eigen::array<int, 3> dims(0,1,2);
context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel3d(), dims);
}
void test_cpu() {
Eigen::Tensor<float, 3> in1(40,50,70);
Eigen::Tensor<float, 3> in2(40,50,70);
Eigen::Tensor<float, 3> out(40,50,70);
in1 = in1.random() + in1.constant(10.0f);
in2 = in2.random() + in2.constant(10.0f);
CPUContext context(in1, in2, out);
test_contextual_eval(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_forced_contextual_eval(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f);
}
}
}
test_compound_assignment(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_contraction(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 40; ++j) {
const float result = out(i,j,0);
float expected = 0;
for (int k = 0; k < 50; ++k) {
for (int l = 0; l < 70; ++l) {
expected += in1(i, k, l) * in2(j, k, l);
}
}
VERIFY_IS_APPROX(expected, result);
}
}
test_1d_convolution(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f));
}
}
}
test_2d_convolution(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f) +
(in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f);
if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) {
continue;
}
VERIFY_IS_APPROX(expected, result);
}
}
}
test_3d_convolution(&context);
for (int i = 0; i < 39; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f) +
(in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f +
in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f);
if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) {
continue;
}
VERIFY_IS_APPROX(expected, result);
}
}
}
}
void test_gpu() {
Eigen::Tensor<float, 3> in1(40,50,70);
Eigen::Tensor<float, 3> in2(40,50,70);
Eigen::Tensor<float, 3> out(40,50,70);
in1 = in1.random() + in1.constant(10.0f);
in2 = in2.random() + in2.constant(10.0f);
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t in2_bytes = in2.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_in2;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, 40,50,70);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, 40,50,70);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, 40,50,70);
GPUContext context(gpu_in1, gpu_in2, gpu_out);
test_contextual_eval(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_forced_contextual_eval(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f);
}
}
}
test_compound_assignment(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_contraction(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 40; ++j) {
const float result = out(i,j,0);
float expected = 0;
for (int k = 0; k < 50; ++k) {
for (int l = 0; l < 70; ++l) {
expected += in1(i, k, l) * in2(j, k, l);
}
}
VERIFY_IS_APPROX(expected, result);
}
}
test_1d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f));
}
}
}
test_2d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f);
VERIFY_IS_APPROX(expected, result);
}
}
}
test_3d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
for (int i = 0; i < 39; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f +
in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f +
in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f);
VERIFY_IS_APPROX(expected, result);
}
}
}
}
void test_cxx11_tensor_device()
{
CALL_SUBTEST_1(test_cpu());
CALL_SUBTEST_2(test_gpu());
}
|