1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <complex>
#include <cmath>
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
template <int DataLayout>
static void test_1D_fft_ifft_invariant(int sequence_length) {
Tensor<double, 1, DataLayout> tensor(sequence_length);
tensor.setRandom();
array<int, 1> fft;
fft[0] = 0;
Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft;
Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length);
for (int i = 0; i < sequence_length; ++i) {
VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i))));
}
}
template <int DataLayout>
static void test_2D_fft_ifft_invariant(int dim0, int dim1) {
Tensor<double, 2, DataLayout> tensor(dim0, dim1);
tensor.setRandom();
array<int, 2> fft;
fft[0] = 0;
fft[1] = 1;
Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft;
Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
for (int i = 0; i < dim0; ++i) {
for (int j = 0; j < dim1; ++j) {
//std::cout << "[" << i << "][" << j << "]" << " Original data: " << tensor(i,j) << " Transformed data:" << tensor_after_fft_ifft(i,j) << std::endl;
VERIFY_IS_APPROX(static_cast<float>(tensor(i,j)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j))));
}
}
}
template <int DataLayout>
static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) {
Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2);
tensor.setRandom();
array<int, 3> fft;
fft[0] = 0;
fft[1] = 1;
fft[2] = 2;
Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft;
Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
for (int i = 0; i < dim0; ++i) {
for (int j = 0; j < dim1; ++j) {
for (int k = 0; k < dim2; ++k) {
VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j,k))));
}
}
}
}
template <int DataLayout>
static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) {
Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3);
tensor.setRandom();
array<int, 2> fft;
fft[0] = 2;
fft[1] = 0;
Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft;
Tensor<double, 4, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3);
for (int i = 0; i < dim0; ++i) {
for (int j = 0; j < dim1; ++j) {
for (int k = 0; k < dim2; ++k) {
for (int l = 0; l < dim3; ++l) {
VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k,l)), static_cast<float>(tensor_after_fft_ifft(i,j,k,l)));
}
}
}
}
}
void test_cxx11_tensor_ifft() {
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4));
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16));
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32));
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024*1024));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4,4));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8,16));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16,32));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024,1024));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4,4,4));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8,16,32));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16,4,8));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256,256,256));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4,4,4,4));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8,16,32,64));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16,4,8,12));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64,64,64,64));
}
|