1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::TensorMap;
static void test_assign()
{
std::string data1[6];
TensorMap<Tensor<std::string, 2>> mat1(data1, 2, 3);
std::string data2[6];
const TensorMap<Tensor<const std::string, 2>> mat2(data2, 2, 3);
for (int i = 0; i < 6; ++i) {
std::ostringstream s1;
s1 << "abc" << i*3;
data1[i] = s1.str();
std::ostringstream s2;
s2 << "def" << i*5;
data2[i] = s2.str();
}
Tensor<std::string, 2> rslt1;
rslt1 = mat1;
Tensor<std::string, 2> rslt2;
rslt2 = mat2;
Tensor<std::string, 2> rslt3 = mat1;
Tensor<std::string, 2> rslt4 = mat2;
Tensor<std::string, 2> rslt5(mat1);
Tensor<std::string, 2> rslt6(mat2);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(rslt1(i,j), data1[i+2*j]);
VERIFY_IS_EQUAL(rslt2(i,j), data2[i+2*j]);
VERIFY_IS_EQUAL(rslt3(i,j), data1[i+2*j]);
VERIFY_IS_EQUAL(rslt4(i,j), data2[i+2*j]);
VERIFY_IS_EQUAL(rslt5(i,j), data1[i+2*j]);
VERIFY_IS_EQUAL(rslt6(i,j), data2[i+2*j]);
}
}
}
static void test_concat()
{
Tensor<std::string, 2> t1(2, 3);
Tensor<std::string, 2> t2(2, 3);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
std::ostringstream s1;
s1 << "abc" << i + j*2;
t1(i, j) = s1.str();
std::ostringstream s2;
s2 << "def" << i*5 + j*32;
t2(i, j) = s2.str();
}
}
Tensor<std::string, 2> result = t1.concatenate(t2, 1);
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_EQUAL(result.dimension(1), 6);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(result(i, j), t1(i, j));
VERIFY_IS_EQUAL(result(i, j+3), t2(i, j));
}
}
}
static void test_slices()
{
Tensor<std::string, 2> data(2, 6);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
std::ostringstream s1;
s1 << "abc" << i + j*2;
data(i, j) = s1.str();
}
}
const Eigen::DSizes<ptrdiff_t, 2> half_size(2, 3);
const Eigen::DSizes<ptrdiff_t, 2> first_half(0, 0);
const Eigen::DSizes<ptrdiff_t, 2> second_half(0, 3);
Tensor<std::string, 2> t1 = data.slice(first_half, half_size);
Tensor<std::string, 2> t2 = data.slice(second_half, half_size);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
VERIFY_IS_EQUAL(data(i, j), t1(i, j));
VERIFY_IS_EQUAL(data(i, j+3), t2(i, j));
}
}
}
static void test_additions()
{
Tensor<std::string, 1> data1(3);
Tensor<std::string, 1> data2(3);
for (int i = 0; i < 3; ++i) {
data1(i) = "abc";
std::ostringstream s1;
s1 << i;
data2(i) = s1.str();
}
Tensor<std::string, 1> sum = data1 + data2;
for (int i = 0; i < 3; ++i) {
std::ostringstream concat;
concat << "abc" << i;
std::string expected = concat.str();
VERIFY_IS_EQUAL(sum(i), expected);
}
}
static void test_initialization()
{
Tensor<std::string, 2> a(2, 3);
a.setConstant(std::string("foo"));
for (int i = 0; i < 2*3; ++i) {
VERIFY_IS_EQUAL(a(i), std::string("foo"));
}
}
void test_cxx11_tensor_of_strings()
{
// Beware: none of this is likely to ever work on a GPU.
CALL_SUBTEST(test_assign());
CALL_SUBTEST(test_concat());
CALL_SUBTEST(test_slices());
CALL_SUBTEST(test_additions());
CALL_SUBTEST(test_initialization());
}
|