1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_sycl
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_SYCL
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
int sizeDim1 = 100;
int sizeDim2 = 100;
int sizeDim3 = 100;
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
Tensor<float, 3> in1(tensorRange);
Tensor<float, 3> in2(tensorRange);
Tensor<float, 3> in3(tensorRange);
Tensor<float, 3> out(tensorRange);
in2 = in2.random();
in3 = in3.random();
float * gpu_in1_data = static_cast<float*>(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(float)));
float * gpu_in2_data = static_cast<float*>(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(float)));
float * gpu_in3_data = static_cast<float*>(sycl_device.allocate(in3.dimensions().TotalSize()*sizeof(float)));
float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float)));
TensorMap<Tensor<float, 3>> gpu_in1(gpu_in1_data, tensorRange);
TensorMap<Tensor<float, 3>> gpu_in2(gpu_in2_data, tensorRange);
TensorMap<Tensor<float, 3>> gpu_in3(gpu_in3_data, tensorRange);
TensorMap<Tensor<float, 3>> gpu_out(gpu_out_data, tensorRange);
/// a=1.2f
gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f);
sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(in1(i,j,k), 1.2f);
}
}
}
printf("a=1.2f Test passed\n");
/// a=b*1.2f
gpu_out.device(sycl_device) = gpu_in1 * 1.2f;
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) * 1.2f);
}
}
}
printf("a=b*1.2f Test Passed\n");
/// c=a*b
sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(float));
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) *
in2(i,j,k));
}
}
}
printf("c=a*b Test Passed\n");
/// c=a+b
gpu_out.device(sycl_device) = gpu_in1 + gpu_in2;
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) +
in2(i,j,k));
}
}
}
printf("c=a+b Test Passed\n");
/// c=a*a
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1;
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) *
in1(i,j,k));
}
}
}
printf("c= a*a Test Passed\n");
//a*3.14f + b*2.7f
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f);
sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i,j,k),
in1(i,j,k) * 3.14f
+ in2(i,j,k) * 2.7f);
}
}
}
printf("a*3.14f + b*2.7f Test Passed\n");
///d= (a>0.5? b:c)
sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.dimensions().TotalSize())*sizeof(float));
gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3);
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
for (int i = 0; i < sizeDim1; ++i) {
for (int j = 0; j < sizeDim2; ++j) {
for (int k = 0; k < sizeDim3; ++k) {
VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f)
? in2(i, j, k)
: in3(i, j, k));
}
}
}
printf("d= (a>0.5? b:c) Test Passed\n");
sycl_device.deallocate(gpu_in1_data);
sycl_device.deallocate(gpu_in2_data);
sycl_device.deallocate(gpu_in3_data);
sycl_device.deallocate(gpu_out_data);
}
void test_cxx11_tensor_sycl() {
cl::sycl::gpu_selector s;
Eigen::SyclDevice sycl_device(s);
CALL_SUBTEST(test_sycl_cpu(sycl_device));
}
|