1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
// Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifdef EIGEN_TEST_PART_1
#include "sparse.h"
#include <Eigen/SparseExtra>
#include <Eigen/KroneckerProduct>
template<typename MatrixType>
void check_dimension(const MatrixType& ab, const int rows, const int cols)
{
VERIFY_IS_EQUAL(ab.rows(), rows);
VERIFY_IS_EQUAL(ab.cols(), cols);
}
template<typename MatrixType>
void check_kronecker_product(const MatrixType& ab)
{
VERIFY_IS_EQUAL(ab.rows(), 6);
VERIFY_IS_EQUAL(ab.cols(), 6);
VERIFY_IS_EQUAL(ab.nonZeros(), 36);
VERIFY_IS_APPROX(ab.coeff(0,0), -0.4017367630386106);
VERIFY_IS_APPROX(ab.coeff(0,1), 0.1056863433932735);
VERIFY_IS_APPROX(ab.coeff(0,2), -0.7255206194554212);
VERIFY_IS_APPROX(ab.coeff(0,3), 0.1908653336744706);
VERIFY_IS_APPROX(ab.coeff(0,4), 0.350864567234111);
VERIFY_IS_APPROX(ab.coeff(0,5), -0.0923032108308013);
VERIFY_IS_APPROX(ab.coeff(1,0), 0.415417514804677);
VERIFY_IS_APPROX(ab.coeff(1,1), -0.2369227701722048);
VERIFY_IS_APPROX(ab.coeff(1,2), 0.7502275131458511);
VERIFY_IS_APPROX(ab.coeff(1,3), -0.4278731019742696);
VERIFY_IS_APPROX(ab.coeff(1,4), -0.3628129162264507);
VERIFY_IS_APPROX(ab.coeff(1,5), 0.2069210808481275);
VERIFY_IS_APPROX(ab.coeff(2,0), 0.05465890160863986);
VERIFY_IS_APPROX(ab.coeff(2,1), -0.2634092511419858);
VERIFY_IS_APPROX(ab.coeff(2,2), 0.09871180285793758);
VERIFY_IS_APPROX(ab.coeff(2,3), -0.4757066334017702);
VERIFY_IS_APPROX(ab.coeff(2,4), -0.04773740823058334);
VERIFY_IS_APPROX(ab.coeff(2,5), 0.2300535609645254);
VERIFY_IS_APPROX(ab.coeff(3,0), -0.8172945853260133);
VERIFY_IS_APPROX(ab.coeff(3,1), 0.2150086428359221);
VERIFY_IS_APPROX(ab.coeff(3,2), 0.5825113847292743);
VERIFY_IS_APPROX(ab.coeff(3,3), -0.1532433770097174);
VERIFY_IS_APPROX(ab.coeff(3,4), -0.329383387282399);
VERIFY_IS_APPROX(ab.coeff(3,5), 0.08665207912033064);
VERIFY_IS_APPROX(ab.coeff(4,0), 0.8451267514863225);
VERIFY_IS_APPROX(ab.coeff(4,1), -0.481996458918977);
VERIFY_IS_APPROX(ab.coeff(4,2), -0.6023482390791535);
VERIFY_IS_APPROX(ab.coeff(4,3), 0.3435339347164565);
VERIFY_IS_APPROX(ab.coeff(4,4), 0.3406002157428891);
VERIFY_IS_APPROX(ab.coeff(4,5), -0.1942526344200915);
VERIFY_IS_APPROX(ab.coeff(5,0), 0.1111982482925399);
VERIFY_IS_APPROX(ab.coeff(5,1), -0.5358806424754169);
VERIFY_IS_APPROX(ab.coeff(5,2), -0.07925446559335647);
VERIFY_IS_APPROX(ab.coeff(5,3), 0.3819388757769038);
VERIFY_IS_APPROX(ab.coeff(5,4), 0.04481475387219876);
VERIFY_IS_APPROX(ab.coeff(5,5), -0.2159688616158057);
}
template<typename MatrixType>
void check_sparse_kronecker_product(const MatrixType& ab)
{
VERIFY_IS_EQUAL(ab.rows(), 12);
VERIFY_IS_EQUAL(ab.cols(), 10);
VERIFY_IS_EQUAL(ab.nonZeros(), 3*2);
VERIFY_IS_APPROX(ab.coeff(3,0), -0.04);
VERIFY_IS_APPROX(ab.coeff(5,1), 0.05);
VERIFY_IS_APPROX(ab.coeff(0,6), -0.08);
VERIFY_IS_APPROX(ab.coeff(2,7), 0.10);
VERIFY_IS_APPROX(ab.coeff(6,8), 0.12);
VERIFY_IS_APPROX(ab.coeff(8,9), -0.15);
}
void test_kronecker_product()
{
// DM = dense matrix; SM = sparse matrix
Matrix<double, 2, 3> DM_a;
SparseMatrix<double> SM_a(2,3);
SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201;
SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049;
SM_a.insert(0,2) = DM_a.coeffRef(0,2) = 0.3896572459516341;
SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921;
SM_a.insert(1,1) = DM_a.coeffRef(1,1) = 0.6469156566545853;
SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789;
MatrixXd DM_b(3,2);
SparseMatrix<double> SM_b(3,2);
SM_b.insert(0,0) = DM_b.coeffRef(0,0) = 0.9004440976767099;
SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832;
SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825;
SM_b.insert(1,1) = DM_b.coeffRef(1,1) = 0.5310335762980047;
SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035;
SM_b.insert(2,1) = DM_b.coeffRef(2,1) = 0.5903998022741264;
SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b);
// test DM_fixedSize = kroneckerProduct(DM_block,DM)
Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b);
CALL_SUBTEST(check_kronecker_product(DM_fix_ab));
CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b)));
for(int i=0;i<DM_fix_ab.rows();++i)
for(int j=0;j<DM_fix_ab.cols();++j)
VERIFY_IS_APPROX(kroneckerProduct(DM_a,DM_b).coeff(i,j), DM_fix_ab(i,j));
// test DM_block = kroneckerProduct(DM,DM)
MatrixXd DM_block_ab(10,15);
DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b);
CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5)));
// test DM = kroneckerProduct(DM,DM)
MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b);
CALL_SUBTEST(check_kronecker_product(DM_ab));
CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,DM_b)));
// test SM = kroneckerProduct(SM,DM)
SparseMatrix<double> SM_ab = kroneckerProduct(SM_a,DM_b);
CALL_SUBTEST(check_kronecker_product(SM_ab));
SparseMatrix<double,RowMajor> SM_ab2 = kroneckerProduct(SM_a,DM_b);
CALL_SUBTEST(check_kronecker_product(SM_ab2));
CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,DM_b)));
// test SM = kroneckerProduct(DM,SM)
SM_ab.setZero();
SM_ab.insert(0,0)=37.0;
SM_ab = kroneckerProduct(DM_a,SM_b);
CALL_SUBTEST(check_kronecker_product(SM_ab));
SM_ab2.setZero();
SM_ab2.insert(0,0)=37.0;
SM_ab2 = kroneckerProduct(DM_a,SM_b);
CALL_SUBTEST(check_kronecker_product(SM_ab2));
CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,SM_b)));
// test SM = kroneckerProduct(SM,SM)
SM_ab.resize(2,33);
SM_ab.insert(0,0)=37.0;
SM_ab = kroneckerProduct(SM_a,SM_b);
CALL_SUBTEST(check_kronecker_product(SM_ab));
SM_ab2.resize(5,11);
SM_ab2.insert(0,0)=37.0;
SM_ab2 = kroneckerProduct(SM_a,SM_b);
CALL_SUBTEST(check_kronecker_product(SM_ab2));
CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,SM_b)));
// test SM = kroneckerProduct(SM,SM) with sparse pattern
SM_a.resize(4,5);
SM_b.resize(3,2);
SM_a.resizeNonZeros(0);
SM_b.resizeNonZeros(0);
SM_a.insert(1,0) = -0.1;
SM_a.insert(0,3) = -0.2;
SM_a.insert(2,4) = 0.3;
SM_a.finalize();
SM_b.insert(0,0) = 0.4;
SM_b.insert(2,1) = -0.5;
SM_b.finalize();
SM_ab.resize(1,1);
SM_ab.insert(0,0)=37.0;
SM_ab = kroneckerProduct(SM_a,SM_b);
CALL_SUBTEST(check_sparse_kronecker_product(SM_ab));
// test dimension of result of DM = kroneckerProduct(DM,DM)
MatrixXd DM_a2(2,1);
MatrixXd DM_b2(5,4);
MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2);
CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4));
DM_a2.resize(10,9);
DM_b2.resize(4,8);
DM_ab2 = kroneckerProduct(DM_a2,DM_b2);
CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8));
for(int i = 0; i < g_repeat; i++)
{
double density = Eigen::internal::random<double>(0.01,0.5);
int ra = Eigen::internal::random<int>(1,50);
int ca = Eigen::internal::random<int>(1,50);
int rb = Eigen::internal::random<int>(1,50);
int cb = Eigen::internal::random<int>(1,50);
SparseMatrix<float,ColMajor> sA(ra,ca), sB(rb,cb), sC;
SparseMatrix<float,RowMajor> sC2;
MatrixXf dA(ra,ca), dB(rb,cb), dC;
initSparse(density, dA, sA);
initSparse(density, dB, sB);
sC = kroneckerProduct(sA,sB);
dC = kroneckerProduct(dA,dB);
VERIFY_IS_APPROX(MatrixXf(sC),dC);
sC = kroneckerProduct(sA.transpose(),sB);
dC = kroneckerProduct(dA.transpose(),dB);
VERIFY_IS_APPROX(MatrixXf(sC),dC);
sC = kroneckerProduct(sA.transpose(),sB.transpose());
dC = kroneckerProduct(dA.transpose(),dB.transpose());
VERIFY_IS_APPROX(MatrixXf(sC),dC);
sC = kroneckerProduct(sA,sB.transpose());
dC = kroneckerProduct(dA,dB.transpose());
VERIFY_IS_APPROX(MatrixXf(sC),dC);
sC2 = kroneckerProduct(sA,sB);
dC = kroneckerProduct(dA,dB);
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
sC2 = kroneckerProduct(dA,sB);
dC = kroneckerProduct(dA,dB);
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
sC2 = kroneckerProduct(sA,dB);
dC = kroneckerProduct(dA,dB);
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
sC2 = kroneckerProduct(2*sA,sB);
dC = kroneckerProduct(2*dA,dB);
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
}
}
#endif
#ifdef EIGEN_TEST_PART_2
// simply check that for a dense kronecker product, sparse module is not needed
#include "main.h"
#include <Eigen/KroneckerProduct>
void test_kronecker_product()
{
MatrixXd a(2,2), b(3,3), c;
a.setRandom();
b.setRandom();
c = kroneckerProduct(a,b);
VERIFY_IS_APPROX(c.block(3,3,3,3), a(1,1)*b);
}
#endif
|