1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>
// Variant of VERIFY_IS_APPROX which uses absolute error instead of
// relative error.
#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))
template<typename Type1, typename Type2>
inline bool test_isApprox_abs(const Type1& a, const Type2& b)
{
return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
}
// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
template<typename MatrixType>
MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
MatrixType diag = MatrixType::Zero(size, size);
for (Index i = 0; i < size; ++i) {
diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2)))
+ internal::random<Scalar>() * Scalar(RealScalar(0.01));
}
MatrixType A = MatrixType::Random(size, size);
HouseholderQR<MatrixType> QRofA(A);
return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
}
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct randomMatrixWithImagEivals
{
// Returns a matrix with eigenvalues clustered around 0 and +/- i.
static MatrixType run(const typename MatrixType::Index size);
};
// Partial specialization for real matrices
template<typename MatrixType>
struct randomMatrixWithImagEivals<MatrixType, 0>
{
static MatrixType run(const typename MatrixType::Index size)
{
typedef typename MatrixType::Scalar Scalar;
MatrixType diag = MatrixType::Zero(size, size);
Index i = 0;
while (i < size) {
Index randomInt = internal::random<Index>(-1, 1);
if (randomInt == 0 || i == size-1) {
diag(i, i) = internal::random<Scalar>() * Scalar(0.01);
++i;
} else {
Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01);
diag(i, i+1) = alpha;
diag(i+1, i) = -alpha;
i += 2;
}
}
MatrixType A = MatrixType::Random(size, size);
HouseholderQR<MatrixType> QRofA(A);
return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
}
};
// Partial specialization for complex matrices
template<typename MatrixType>
struct randomMatrixWithImagEivals<MatrixType, 1>
{
static MatrixType run(const typename MatrixType::Index size)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
const Scalar imagUnit(0, 1);
MatrixType diag = MatrixType::Zero(size, size);
for (Index i = 0; i < size; ++i) {
diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit
+ internal::random<Scalar>() * Scalar(RealScalar(0.01));
}
MatrixType A = MatrixType::Random(size, size);
HouseholderQR<MatrixType> QRofA(A);
return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
}
};
template<typename MatrixType>
void testMatrixExponential(const MatrixType& A)
{
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>));
}
template<typename MatrixType>
void testMatrixLogarithm(const MatrixType& A)
{
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
MatrixType scaledA;
RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff();
if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI))
scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum;
else
scaledA = A;
// identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X
MatrixType expA = scaledA.exp();
MatrixType logExpA = expA.log();
VERIFY_IS_APPROX(logExpA, scaledA);
}
template<typename MatrixType>
void testHyperbolicFunctions(const MatrixType& A)
{
// Need to use absolute error because of possible cancellation when
// adding/subtracting expA and expmA.
VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2);
VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2);
}
template<typename MatrixType>
void testGonioFunctions(const MatrixType& A)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime,
MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
ComplexScalar imagUnit(0,1);
ComplexScalar two(2,0);
ComplexMatrix Ac = A.template cast<ComplexScalar>();
ComplexMatrix exp_iA = (imagUnit * Ac).exp();
ComplexMatrix exp_miA = (-imagUnit * Ac).exp();
ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>();
VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>();
VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
}
template<typename MatrixType>
void testMatrix(const MatrixType& A)
{
testMatrixExponential(A);
testMatrixLogarithm(A);
testHyperbolicFunctions(A);
testGonioFunctions(A);
}
template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
// Matrices with clustered eigenvalue lead to different code paths
// in MatrixFunction.h and are thus useful for testing.
const Index size = m.rows();
for (int i = 0; i < g_repeat; i++) {
testMatrix(MatrixType::Random(size, size).eval());
testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size));
}
}
void test_matrix_function()
{
CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
CALL_SUBTEST_4(testMatrixType(Matrix2d()));
CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
}
|