File: JacobiSVD_basic.cpp

package info (click to toggle)
eigen3 3.4.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,492 kB
  • sloc: cpp: 151,572; ansic: 75,396; fortran: 24,137; sh: 971; python: 244; javascript: 205; makefile: 42
file content (9 lines) | stat: -rw-r--r-- 614 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
MatrixXf m = MatrixXf::Random(3,2);
cout << "Here is the matrix m:" << endl << m << endl;
JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
cout << "Its singular values are:" << endl << svd.singularValues() << endl;
cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() << endl;
cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV() << endl;
Vector3f rhs(1, 0, 0);
cout << "Now consider this rhs vector:" << endl << rhs << endl;
cout << "A least-squares solution of m*x = rhs is:" << endl << svd.solve(rhs) << endl;