File: Tutorial_sparse_example.cpp

package info (click to toggle)
eigen3 3.4.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,492 kB
  • sloc: cpp: 151,572; ansic: 75,396; fortran: 24,137; sh: 971; python: 244; javascript: 205; makefile: 42
file content (38 lines) | stat: -rw-r--r-- 1,184 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <Eigen/Sparse>
#include <vector>
#include <iostream>

typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
typedef Eigen::Triplet<double> T;

void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n);
void saveAsBitmap(const Eigen::VectorXd& x, int n, const char* filename);

int main(int argc, char** argv)
{
  if(argc!=2) {
    std::cerr << "Error: expected one and only one argument.\n";
    return -1;
  }
  
  int n = 300;  // size of the image
  int m = n*n;  // number of unknowns (=number of pixels)

  // Assembly:
  std::vector<T> coefficients;            // list of non-zeros coefficients
  Eigen::VectorXd b(m);                   // the right hand side-vector resulting from the constraints
  buildProblem(coefficients, b, n);

  SpMat A(m,m);
  A.setFromTriplets(coefficients.begin(), coefficients.end());

  // Solving:
  Eigen::SimplicialCholesky<SpMat> chol(A);  // performs a Cholesky factorization of A
  Eigen::VectorXd x = chol.solve(b);         // use the factorization to solve for the given right hand side

  // Export the result to a file:
  saveAsBitmap(x, n, argv[1]);

  return 0;
}