1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
// Test the corner cases of pow(x, y) for real types.
template<typename Scalar>
void pow_test() {
const Scalar zero = Scalar(0);
const Scalar eps = Eigen::NumTraits<Scalar>::epsilon();
const Scalar one = Scalar(1);
const Scalar two = Scalar(2);
const Scalar three = Scalar(3);
const Scalar sqrt_half = Scalar(std::sqrt(0.5));
const Scalar sqrt2 = Scalar(std::sqrt(2));
const Scalar inf = Eigen::NumTraits<Scalar>::infinity();
const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN();
const Scalar denorm_min = std::numeric_limits<Scalar>::denorm_min();
const Scalar min = (std::numeric_limits<Scalar>::min)();
const Scalar max = (std::numeric_limits<Scalar>::max)();
const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps;
const static Scalar abs_vals[] = {zero,
denorm_min,
min,
eps,
sqrt_half,
one,
sqrt2,
two,
three,
max_exp,
max,
inf,
nan};
const int abs_cases = 13;
const int num_cases = 2*abs_cases * 2*abs_cases;
// Repeat the same value to make sure we hit the vectorized path.
const int num_repeats = 32;
Array<Scalar, Dynamic, Dynamic> x(num_repeats, num_cases);
Array<Scalar, Dynamic, Dynamic> y(num_repeats, num_cases);
int count = 0;
for (int i = 0; i < abs_cases; ++i) {
const Scalar abs_x = abs_vals[i];
for (int sign_x = 0; sign_x < 2; ++sign_x) {
Scalar x_case = sign_x == 0 ? -abs_x : abs_x;
for (int j = 0; j < abs_cases; ++j) {
const Scalar abs_y = abs_vals[j];
for (int sign_y = 0; sign_y < 2; ++sign_y) {
Scalar y_case = sign_y == 0 ? -abs_y : abs_y;
for (int repeat = 0; repeat < num_repeats; ++repeat) {
x(repeat, count) = x_case;
y(repeat, count) = y_case;
}
++count;
}
}
}
}
Array<Scalar, Dynamic, Dynamic> actual = x.pow(y);
const Scalar tol = test_precision<Scalar>();
bool all_pass = true;
for (int i = 0; i < 1; ++i) {
for (int j = 0; j < num_cases; ++j) {
Scalar e = static_cast<Scalar>(std::pow(x(i,j), y(i,j)));
Scalar a = actual(i, j);
bool fail = !(a==e) && !internal::isApprox(a, e, tol) && !((numext::isnan)(a) && (numext::isnan)(e));
all_pass &= !fail;
if (fail) {
std::cout << "pow(" << x(i,j) << "," << y(i,j) << ") = " << a << " != " << e << std::endl;
}
}
}
VERIFY(all_pass);
}
template<typename ArrayType> void array(const ArrayType& m)
{
typedef typename ArrayType::Scalar Scalar;
typedef typename ArrayType::RealScalar RealScalar;
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
Index rows = m.rows();
Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols),
m2 = ArrayType::Random(rows, cols),
m3(rows, cols);
ArrayType m4 = m1; // copy constructor
VERIFY_IS_APPROX(m1, m4);
ColVectorType cv1 = ColVectorType::Random(rows);
RowVectorType rv1 = RowVectorType::Random(cols);
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
// scalar addition
VERIFY_IS_APPROX(m1 + s1, s1 + m1);
VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
m3 = m1;
m3 += s2;
VERIFY_IS_APPROX(m3, m1 + s2);
m3 = m1;
m3 -= s1;
VERIFY_IS_APPROX(m3, m1 - s1);
// scalar operators via Maps
m3 = m1;
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
VERIFY_IS_APPROX(m1, m3 - m2);
m3 = m1;
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
VERIFY_IS_APPROX(m1, m3 + m2);
m3 = m1;
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
VERIFY_IS_APPROX(m1, m3 * m2);
m3 = m1;
m2 = ArrayType::Random(rows,cols);
m2 = (m2==0).select(1,m2);
ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
VERIFY_IS_APPROX(m1, m3 / m2);
// reductions
VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
using std::abs;
VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
// vector-wise ops
m3 = m1;
VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
m3 = m1;
VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
m3 = m1;
VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
m3 = m1;
VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
// Conversion from scalar
VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1));
VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1));
typedef Array<Scalar,
ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
ArrayType::Options> FixedArrayType;
{
FixedArrayType f1(s1);
VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
FixedArrayType f2(numext::real(s1));
VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
FixedArrayType f3((int)100*numext::real(s1));
VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
f1.setRandom();
FixedArrayType f4(f1.data());
VERIFY_IS_APPROX(f4, f1);
}
#if EIGEN_HAS_CXX11
{
FixedArrayType f1{s1};
VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
FixedArrayType f2{numext::real(s1)};
VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
FixedArrayType f3{(int)100*numext::real(s1)};
VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
f1.setRandom();
FixedArrayType f4{f1.data()};
VERIFY_IS_APPROX(f4, f1);
}
#endif
// pow
VERIFY_IS_APPROX(m1.pow(2), m1.square());
VERIFY_IS_APPROX(pow(m1,2), m1.square());
VERIFY_IS_APPROX(m1.pow(3), m1.cube());
VERIFY_IS_APPROX(pow(m1,3), m1.cube());
VERIFY_IS_APPROX((-m1).pow(3), -m1.cube());
VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());
ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
VERIFY_IS_APPROX(m1.pow(exponents), m1.square());
VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square());
VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square());
VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
// Check possible conflicts with 1D ctor
typedef Array<Scalar, Dynamic, 1> OneDArrayType;
{
OneDArrayType o1(rows);
VERIFY(o1.size()==rows);
OneDArrayType o2(static_cast<int>(rows));
VERIFY(o2.size()==rows);
}
#if EIGEN_HAS_CXX11
{
OneDArrayType o1{rows};
VERIFY(o1.size()==rows);
OneDArrayType o4{int(rows)};
VERIFY(o4.size()==rows);
}
#endif
// Check possible conflicts with 2D ctor
typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType;
typedef Array<Scalar, 2, 1> ArrayType2;
{
TwoDArrayType o1(rows,cols);
VERIFY(o1.rows()==rows);
VERIFY(o1.cols()==cols);
TwoDArrayType o2(static_cast<int>(rows),static_cast<int>(cols));
VERIFY(o2.rows()==rows);
VERIFY(o2.cols()==cols);
ArrayType2 o3(rows,cols);
VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols));
ArrayType2 o4(static_cast<int>(rows),static_cast<int>(cols));
VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols));
}
#if EIGEN_HAS_CXX11
{
TwoDArrayType o1{rows,cols};
VERIFY(o1.rows()==rows);
VERIFY(o1.cols()==cols);
TwoDArrayType o2{int(rows),int(cols)};
VERIFY(o2.rows()==rows);
VERIFY(o2.cols()==cols);
ArrayType2 o3{rows,cols};
VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols));
ArrayType2 o4{int(rows),int(cols)};
VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols));
}
#endif
}
template<typename ArrayType> void comparisons(const ArrayType& m)
{
using std::abs;
typedef typename ArrayType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows();
Index cols = m.cols();
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
ArrayType m1 = ArrayType::Random(rows, cols),
m2 = ArrayType::Random(rows, cols),
m3(rows, cols),
m4 = m1;
m4 = (m4.abs()==Scalar(0)).select(1,m4);
VERIFY(((m1 + Scalar(1)) > m1).all());
VERIFY(((m1 - Scalar(1)) < m1).all());
if (rows*cols>1)
{
m3 = m1;
m3(r,c) += 1;
VERIFY(! (m1 < m3).all() );
VERIFY(! (m1 > m3).all() );
}
VERIFY(!(m1 > m2 && m1 < m2).any());
VERIFY((m1 <= m2 || m1 >= m2).all());
// comparisons array to scalar
VERIFY( (m1 != (m1(r,c)+1) ).any() );
VERIFY( (m1 > (m1(r,c)-1) ).any() );
VERIFY( (m1 < (m1(r,c)+1) ).any() );
VERIFY( (m1 == m1(r,c) ).any() );
// comparisons scalar to array
VERIFY( ( (m1(r,c)+1) != m1).any() );
VERIFY( ( (m1(r,c)-1) < m1).any() );
VERIFY( ( (m1(r,c)+1) > m1).any() );
VERIFY( ( m1(r,c) == m1).any() );
// test Select
VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
for (int j=0; j<cols; ++j)
for (int i=0; i<rows; ++i)
m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
.select(ArrayType::Zero(rows,cols),m1), m3);
// shorter versions:
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
.select(0,m1), m3);
VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
.select(m1,0), m3);
// even shorter version:
VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
// count
VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
// and/or
VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
RealScalar a = m1.abs().mean();
VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
typedef Array<Index, Dynamic, 1> ArrayOfIndices;
// TODO allows colwise/rowwise for array
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
}
template<typename ArrayType> void array_real(const ArrayType& m)
{
using std::abs;
using std::sqrt;
typedef typename ArrayType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows();
Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols),
m2 = ArrayType::Random(rows, cols),
m3(rows, cols),
m4 = m1;
m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4);
Scalar s1 = internal::random<Scalar>();
// these tests are mostly to check possible compilation issues with free-functions.
VERIFY_IS_APPROX(m1.sin(), sin(m1));
VERIFY_IS_APPROX(m1.cos(), cos(m1));
VERIFY_IS_APPROX(m1.tan(), tan(m1));
VERIFY_IS_APPROX(m1.asin(), asin(m1));
VERIFY_IS_APPROX(m1.acos(), acos(m1));
VERIFY_IS_APPROX(m1.atan(), atan(m1));
VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
#if EIGEN_HAS_CXX11_MATH
VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1)));
VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1)));
VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1)));
#endif
VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
VERIFY_IS_APPROX(m1.arg(), arg(m1));
VERIFY_IS_APPROX(m1.round(), round(m1));
VERIFY_IS_APPROX(m1.rint(), rint(m1));
VERIFY_IS_APPROX(m1.floor(), floor(m1));
VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
VERIFY_IS_APPROX(m1.abs(), abs(m1));
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
VERIFY_IS_APPROX(m1.square(), square(m1));
VERIFY_IS_APPROX(m1.cube(), cube(m1));
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
VERIFY_IS_APPROX(m1.sign(), sign(m1));
VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all());
// avoid inf and NaNs so verification doesn't fail
m3 = m4.abs();
VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3)));
VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3)));
VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3)));
VERIFY_IS_APPROX(m3.log(), log(m3));
VERIFY_IS_APPROX(m3.log1p(), log1p(m3));
VERIFY_IS_APPROX(m3.log10(), log10(m3));
VERIFY_IS_APPROX(m3.log2(), log2(m3));
VERIFY((!(m1>m2) == (m1<=m2)).all());
VERIFY_IS_APPROX(sin(m1.asin()), m1);
VERIFY_IS_APPROX(cos(m1.acos()), m1);
VERIFY_IS_APPROX(tan(m1.atan()), m1);
VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1)));
VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1)));
VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1))));
VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1))));
VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1))));
VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all());
VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all());
VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all());
VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all());
VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all());
VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all());
VERIFY((Eigen::isinf)(m4/Scalar(0)).all());
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all());
VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
VERIFY_IS_APPROX(m3, sqrt(abs2(m3)));
VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1));
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);
VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1));
if(!NumTraits<Scalar>::IsComplex)
VERIFY_IS_APPROX(numext::real(m1), m1);
// shift argument of logarithm so that it is not zero
Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber));
VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
VERIFY_IS_APPROX(m1.exp(), exp(m1));
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber));
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
// Avoid inf and NaN.
m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3);
VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse());
pow_test<Scalar>();
VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10)));
VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2)));
// scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
s1 += Scalar(tiny);
m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
// check inplace transpose
m3 = m1;
m3.transposeInPlace();
VERIFY_IS_APPROX(m3, m1.transpose());
m3.transposeInPlace();
VERIFY_IS_APPROX(m3, m1);
}
template<typename ArrayType> void array_complex(const ArrayType& m)
{
typedef typename ArrayType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows();
Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols),
m2(rows, cols),
m4 = m1;
m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real());
m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());
Array<RealScalar, -1, -1> m3(rows, cols);
for (Index i = 0; i < m.rows(); ++i)
for (Index j = 0; j < m.cols(); ++j)
m2(i,j) = sqrt(m1(i,j));
// these tests are mostly to check possible compilation issues with free-functions.
VERIFY_IS_APPROX(m1.sin(), sin(m1));
VERIFY_IS_APPROX(m1.cos(), cos(m1));
VERIFY_IS_APPROX(m1.tan(), tan(m1));
VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
VERIFY_IS_APPROX(m1.arg(), arg(m1));
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
VERIFY_IS_APPROX(m1.log(), log(m1));
VERIFY_IS_APPROX(m1.log10(), log10(m1));
VERIFY_IS_APPROX(m1.log2(), log2(m1));
VERIFY_IS_APPROX(m1.abs(), abs(m1));
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
VERIFY_IS_APPROX(m1.square(), square(m1));
VERIFY_IS_APPROX(m1.cube(), cube(m1));
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
VERIFY_IS_APPROX(m1.sign(), sign(m1));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
VERIFY_IS_APPROX(m1.exp(), exp(m1));
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.);
// Check for larger magnitude complex numbers that expm1 matches exp - 1.
VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.);
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1))));
for (Index i = 0; i < m.rows(); ++i)
for (Index j = 0; j < m.cols(); ++j)
m3(i,j) = std::atan2(m1(i,j).imag(), m1(i,j).real());
VERIFY_IS_APPROX(arg(m1), m3);
std::complex<RealScalar> zero(0.0,0.0);
VERIFY((Eigen::isnan)(m1*zero/zero).all());
#if EIGEN_COMP_MSVC
// msvc complex division is not robust
VERIFY((Eigen::isinf)(m4/RealScalar(0)).all());
#else
#if EIGEN_COMP_CLANG
// clang's complex division is notoriously broken too
if((numext::isinf)(m4(0,0)/RealScalar(0))) {
#endif
VERIFY((Eigen::isinf)(m4/zero).all());
#if EIGEN_COMP_CLANG
}
else
{
VERIFY((Eigen::isinf)(m4.real()/zero.real()).all());
}
#endif
#endif // MSVC
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag())));
VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
VERIFY_IS_APPROX(log2(m1), log(m1)/log(2));
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);
// scalar by array division
Scalar s1 = internal::random<Scalar>();
const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon());
s1 += Scalar(tiny);
m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
// check inplace transpose
m2 = m1;
m2.transposeInPlace();
VERIFY_IS_APPROX(m2, m1.transpose());
m2.transposeInPlace();
VERIFY_IS_APPROX(m2, m1);
// Check vectorized inplace transpose.
ArrayType m5 = ArrayType::Random(131, 131);
ArrayType m6 = m5;
m6.transposeInPlace();
VERIFY_IS_APPROX(m6, m5.transpose());
}
template<typename ArrayType> void min_max(const ArrayType& m)
{
typedef typename ArrayType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols);
// min/max with array
Scalar maxM1 = m1.maxCoeff();
Scalar minM1 = m1.minCoeff();
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
// min/max with scalar input
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
VERIFY_IS_APPROX(m1, (m1.max)( minM1));
// min/max with various NaN propagation options.
if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) {
m1(0,0) = NumTraits<Scalar>::quiet_NaN();
maxM1 = m1.template maxCoeff<PropagateNaN>();
minM1 = m1.template minCoeff<PropagateNaN>();
VERIFY((numext::isnan)(maxM1));
VERIFY((numext::isnan)(minM1));
maxM1 = m1.template maxCoeff<PropagateNumbers>();
minM1 = m1.template minCoeff<PropagateNumbers>();
VERIFY(!(numext::isnan)(maxM1));
VERIFY(!(numext::isnan)(minM1));
}
}
template<int N>
struct shift_left {
template<typename Scalar>
Scalar operator()(const Scalar& v) const {
return v << N;
}
};
template<int N>
struct arithmetic_shift_right {
template<typename Scalar>
Scalar operator()(const Scalar& v) const {
return v >> N;
}
};
template<typename ArrayType> void array_integer(const ArrayType& m)
{
Index rows = m.rows();
Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols),
m2(rows, cols);
m2 = m1.template shiftLeft<2>();
VERIFY( (m2 == m1.unaryExpr(shift_left<2>())).all() );
m2 = m1.template shiftLeft<9>();
VERIFY( (m2 == m1.unaryExpr(shift_left<9>())).all() );
m2 = m1.template shiftRight<2>();
VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<2>())).all() );
m2 = m1.template shiftRight<9>();
VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<9>())).all() );
}
EIGEN_DECLARE_TEST(array_cwise)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
CALL_SUBTEST_2( array(Array22f()) );
CALL_SUBTEST_3( array(Array44d()) );
CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( array(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( array_integer(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( array_integer(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
CALL_SUBTEST_2( comparisons(Array22f()) );
CALL_SUBTEST_3( comparisons(Array44d()) );
CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
CALL_SUBTEST_2( min_max(Array22f()) );
CALL_SUBTEST_3( min_max(Array44d()) );
CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
CALL_SUBTEST_2( array_real(Array22f()) );
CALL_SUBTEST_3( array_real(Array44d()) );
CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) );
CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr;
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
ArrayBase<Xpr>
>::value));
}
|