1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <sstream>
#include <memory>
#include <math.h>
#include "main.h"
#include <Eigen/src/Core/arch/Default/BFloat16.h>
#define VERIFY_BFLOAT16_BITS_EQUAL(h, bits) \
VERIFY_IS_EQUAL((numext::bit_cast<numext::uint16_t>(h)), (static_cast<numext::uint16_t>(bits)))
// Make sure it's possible to forward declare Eigen::bfloat16
namespace Eigen {
struct bfloat16;
}
using Eigen::bfloat16;
float BinaryToFloat(uint32_t sign, uint32_t exponent, uint32_t high_mantissa,
uint32_t low_mantissa) {
float dest;
uint32_t src = (sign << 31) + (exponent << 23) + (high_mantissa << 16) + low_mantissa;
memcpy(static_cast<void*>(&dest),
static_cast<const void*>(&src), sizeof(dest));
return dest;
}
template<typename T>
void test_roundtrip() {
// Representable T round trip via bfloat16
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(-std::numeric_limits<T>::infinity()))), -std::numeric_limits<T>::infinity());
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(std::numeric_limits<T>::infinity()))), std::numeric_limits<T>::infinity());
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(-1.0)))), T(-1.0));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(-0.5)))), T(-0.5));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(-0.0)))), T(-0.0));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(1.0)))), T(1.0));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(0.5)))), T(0.5));
VERIFY_IS_EQUAL((internal::cast<bfloat16,T>(internal::cast<T,bfloat16>(T(0.0)))), T(0.0));
}
void test_conversion()
{
using Eigen::bfloat16_impl::__bfloat16_raw;
// Round-trip casts
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(1.0f))),
bfloat16(1.0f));
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(0.5f))),
bfloat16(0.5f));
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(-0.33333f))),
bfloat16(-0.33333f));
VERIFY_IS_EQUAL(
numext::bit_cast<bfloat16>(numext::bit_cast<numext::uint16_t>(bfloat16(0.0f))),
bfloat16(0.0f));
// Conversion from float.
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(1.0f), 0x3f80);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f), 0x3f00);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.33333f), 0x3eab);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3.38e38f), 0x7f7e);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3.40e38f), 0x7f80); // Becomes infinity.
// Verify round-to-nearest-even behavior.
float val1 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c00)));
float val2 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c01)));
float val3 = static_cast<float>(bfloat16(__bfloat16_raw(0x3c02)));
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f * (val1 + val2)), 0x3c00);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.5f * (val2 + val3)), 0x3c02);
// Conversion from int.
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(-1), 0xbf80);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0), 0x0000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(1), 0x3f80);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(2), 0x4000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(3), 0x4040);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(12), 0x4140);
// Conversion from bool.
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(false), 0x0000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(true), 0x3f80);
// Conversion to bool
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(3)), true);
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(0.33333f)), true);
VERIFY_IS_EQUAL(bfloat16(-0.0), false);
VERIFY_IS_EQUAL(static_cast<bool>(bfloat16(0.0)), false);
// Explicit conversion to float.
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(__bfloat16_raw(0x0000))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(__bfloat16_raw(0x3f80))), 1.0f);
// Implicit conversion to float
VERIFY_IS_EQUAL(bfloat16(__bfloat16_raw(0x0000)), 0.0f);
VERIFY_IS_EQUAL(bfloat16(__bfloat16_raw(0x3f80)), 1.0f);
// Zero representations
VERIFY_IS_EQUAL(bfloat16(0.0f), bfloat16(0.0f));
VERIFY_IS_EQUAL(bfloat16(-0.0f), bfloat16(0.0f));
VERIFY_IS_EQUAL(bfloat16(-0.0f), bfloat16(-0.0f));
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(0.0f), 0x0000);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(-0.0f), 0x8000);
// Default is zero
VERIFY_IS_EQUAL(static_cast<float>(bfloat16()), 0.0f);
// Representable floats round trip via bfloat16
test_roundtrip<float>();
test_roundtrip<double>();
test_roundtrip<std::complex<float> >();
test_roundtrip<std::complex<double> >();
// Conversion
Array<float,1,100> a;
for (int i = 0; i < 100; i++) a(i) = i + 1.25;
Array<bfloat16,1,100> b = a.cast<bfloat16>();
Array<float,1,100> c = b.cast<float>();
for (int i = 0; i < 100; ++i) {
VERIFY_LE(numext::abs(c(i) - a(i)), a(i) / 128);
}
// Epsilon
VERIFY_LE(1.0f, static_cast<float>((std::numeric_limits<bfloat16>::epsilon)() + bfloat16(1.0f)));
VERIFY_IS_EQUAL(1.0f, static_cast<float>((std::numeric_limits<bfloat16>::epsilon)() / bfloat16(2.0f) + bfloat16(1.0f)));
// Negate
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(3.0f)), -3.0f);
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(-4.5f)), 4.5f);
#if !EIGEN_COMP_MSVC
// Visual Studio errors out on divisions by 0
VERIFY((numext::isnan)(static_cast<float>(bfloat16(0.0 / 0.0))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(1.0 / 0.0))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(-1.0 / 0.0))));
// Visual Studio errors out on divisions by 0
VERIFY((numext::isnan)(bfloat16(0.0 / 0.0)));
VERIFY((numext::isinf)(bfloat16(1.0 / 0.0)));
VERIFY((numext::isinf)(bfloat16(-1.0 / 0.0)));
#endif
// NaNs and infinities.
VERIFY(!(numext::isinf)(static_cast<float>(bfloat16(3.38e38f)))); // Largest finite number.
VERIFY(!(numext::isnan)(static_cast<float>(bfloat16(0.0f))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(__bfloat16_raw(0xff80)))));
VERIFY((numext::isnan)(static_cast<float>(bfloat16(__bfloat16_raw(0xffc0)))));
VERIFY((numext::isinf)(static_cast<float>(bfloat16(__bfloat16_raw(0x7f80)))));
VERIFY((numext::isnan)(static_cast<float>(bfloat16(__bfloat16_raw(0x7fc0)))));
// Exactly same checks as above, just directly on the bfloat16 representation.
VERIFY(!(numext::isinf)(bfloat16(__bfloat16_raw(0x7bff))));
VERIFY(!(numext::isnan)(bfloat16(__bfloat16_raw(0x0000))));
VERIFY((numext::isinf)(bfloat16(__bfloat16_raw(0xff80))));
VERIFY((numext::isnan)(bfloat16(__bfloat16_raw(0xffc0))));
VERIFY((numext::isinf)(bfloat16(__bfloat16_raw(0x7f80))));
VERIFY((numext::isnan)(bfloat16(__bfloat16_raw(0x7fc0))));
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(BinaryToFloat(0x0, 0xff, 0x40, 0x0)), 0x7fc0);
VERIFY_BFLOAT16_BITS_EQUAL(bfloat16(BinaryToFloat(0x1, 0xff, 0x40, 0x0)), 0xffc0);
}
void test_numtraits()
{
std::cout << "epsilon = " << NumTraits<bfloat16>::epsilon() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::epsilon()) << ")" << std::endl;
std::cout << "highest = " << NumTraits<bfloat16>::highest() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::highest()) << ")" << std::endl;
std::cout << "lowest = " << NumTraits<bfloat16>::lowest() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::lowest()) << ")" << std::endl;
std::cout << "min = " << (std::numeric_limits<bfloat16>::min)() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>((std::numeric_limits<bfloat16>::min)()) << ")" << std::endl;
std::cout << "denorm min = " << (std::numeric_limits<bfloat16>::denorm_min)() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>((std::numeric_limits<bfloat16>::denorm_min)()) << ")" << std::endl;
std::cout << "infinity = " << NumTraits<bfloat16>::infinity() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::infinity()) << ")" << std::endl;
std::cout << "quiet nan = " << NumTraits<bfloat16>::quiet_NaN() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(NumTraits<bfloat16>::quiet_NaN()) << ")" << std::endl;
std::cout << "signaling nan = " << std::numeric_limits<bfloat16>::signaling_NaN() << " (0x" << std::hex << numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::signaling_NaN()) << ")" << std::endl;
VERIFY(NumTraits<bfloat16>::IsSigned);
VERIFY_IS_EQUAL(
numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::infinity()),
numext::bit_cast<numext::uint16_t>(bfloat16(std::numeric_limits<float>::infinity())) );
// There is no guarantee that casting a 32-bit NaN to bfloat16 has a precise
// bit pattern. We test that it is in fact a NaN, then test the signaling
// bit (msb of significand is 1 for quiet, 0 for signaling).
const numext::uint16_t BFLOAT16_QUIET_BIT = 0x0040;
VERIFY(
(numext::isnan)(std::numeric_limits<bfloat16>::quiet_NaN())
&& (numext::isnan)(bfloat16(std::numeric_limits<float>::quiet_NaN()))
&& ((numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::quiet_NaN()) & BFLOAT16_QUIET_BIT) > 0)
&& ((numext::bit_cast<numext::uint16_t>(bfloat16(std::numeric_limits<float>::quiet_NaN())) & BFLOAT16_QUIET_BIT) > 0) );
// After a cast to bfloat16, a signaling NaN may become non-signaling. Thus,
// we check that both are NaN, and that only the `numeric_limits` version is
// signaling.
VERIFY(
(numext::isnan)(std::numeric_limits<bfloat16>::signaling_NaN())
&& (numext::isnan)(bfloat16(std::numeric_limits<float>::signaling_NaN()))
&& ((numext::bit_cast<numext::uint16_t>(std::numeric_limits<bfloat16>::signaling_NaN()) & BFLOAT16_QUIET_BIT) == 0) );
VERIFY( (std::numeric_limits<bfloat16>::min)() > bfloat16(0.f) );
VERIFY( (std::numeric_limits<bfloat16>::denorm_min)() > bfloat16(0.f) );
VERIFY_IS_EQUAL( (std::numeric_limits<bfloat16>::denorm_min)()/bfloat16(2), bfloat16(0.f) );
}
void test_arithmetic()
{
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(2) + bfloat16(2)), 4);
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(2) + bfloat16(-2)), 0);
VERIFY_IS_APPROX(static_cast<float>(bfloat16(0.33333f) + bfloat16(0.66667f)), 1.0f);
VERIFY_IS_EQUAL(static_cast<float>(bfloat16(2.0f) * bfloat16(-5.5f)), -11.0f);
VERIFY_IS_APPROX(static_cast<float>(bfloat16(1.0f) / bfloat16(3.0f)), 0.3339f);
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(4096.0f)), -4096.0f);
VERIFY_IS_EQUAL(static_cast<float>(-bfloat16(-4096.0f)), 4096.0f);
}
void test_comparison()
{
VERIFY(bfloat16(1.0f) > bfloat16(0.5f));
VERIFY(bfloat16(0.5f) < bfloat16(1.0f));
VERIFY(!(bfloat16(1.0f) < bfloat16(0.5f)));
VERIFY(!(bfloat16(0.5f) > bfloat16(1.0f)));
VERIFY(!(bfloat16(4.0f) > bfloat16(4.0f)));
VERIFY(!(bfloat16(4.0f) < bfloat16(4.0f)));
VERIFY(!(bfloat16(0.0f) < bfloat16(-0.0f)));
VERIFY(!(bfloat16(-0.0f) < bfloat16(0.0f)));
VERIFY(!(bfloat16(0.0f) > bfloat16(-0.0f)));
VERIFY(!(bfloat16(-0.0f) > bfloat16(0.0f)));
VERIFY(bfloat16(0.2f) > bfloat16(-1.0f));
VERIFY(bfloat16(-1.0f) < bfloat16(0.2f));
VERIFY(bfloat16(-16.0f) < bfloat16(-15.0f));
VERIFY(bfloat16(1.0f) == bfloat16(1.0f));
VERIFY(bfloat16(1.0f) != bfloat16(2.0f));
// Comparisons with NaNs and infinities.
#if !EIGEN_COMP_MSVC
// Visual Studio errors out on divisions by 0
VERIFY(!(bfloat16(0.0 / 0.0) == bfloat16(0.0 / 0.0)));
VERIFY(bfloat16(0.0 / 0.0) != bfloat16(0.0 / 0.0));
VERIFY(!(bfloat16(1.0) == bfloat16(0.0 / 0.0)));
VERIFY(!(bfloat16(1.0) < bfloat16(0.0 / 0.0)));
VERIFY(!(bfloat16(1.0) > bfloat16(0.0 / 0.0)));
VERIFY(bfloat16(1.0) != bfloat16(0.0 / 0.0));
VERIFY(bfloat16(1.0) < bfloat16(1.0 / 0.0));
VERIFY(bfloat16(1.0) > bfloat16(-1.0 / 0.0));
#endif
}
void test_basic_functions()
{
VERIFY_IS_EQUAL(static_cast<float>(numext::abs(bfloat16(3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(abs(bfloat16(3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(numext::abs(bfloat16(-3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(abs(bfloat16(-3.5f))), 3.5f);
VERIFY_IS_EQUAL(static_cast<float>(numext::floor(bfloat16(3.5f))), 3.0f);
VERIFY_IS_EQUAL(static_cast<float>(floor(bfloat16(3.5f))), 3.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::floor(bfloat16(-3.5f))), -4.0f);
VERIFY_IS_EQUAL(static_cast<float>(floor(bfloat16(-3.5f))), -4.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::ceil(bfloat16(3.5f))), 4.0f);
VERIFY_IS_EQUAL(static_cast<float>(ceil(bfloat16(3.5f))), 4.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::ceil(bfloat16(-3.5f))), -3.0f);
VERIFY_IS_EQUAL(static_cast<float>(ceil(bfloat16(-3.5f))), -3.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::sqrt(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(sqrt(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::sqrt(bfloat16(4.0f))), 2.0f);
VERIFY_IS_APPROX(static_cast<float>(sqrt(bfloat16(4.0f))), 2.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::pow(bfloat16(0.0f), bfloat16(1.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(pow(bfloat16(0.0f), bfloat16(1.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::pow(bfloat16(2.0f), bfloat16(2.0f))), 4.0f);
VERIFY_IS_APPROX(static_cast<float>(pow(bfloat16(2.0f), bfloat16(2.0f))), 4.0f);
VERIFY_IS_EQUAL(static_cast<float>(numext::exp(bfloat16(0.0f))), 1.0f);
VERIFY_IS_EQUAL(static_cast<float>(exp(bfloat16(0.0f))), 1.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::exp(bfloat16(EIGEN_PI))), 20.f + static_cast<float>(EIGEN_PI));
VERIFY_IS_APPROX(static_cast<float>(exp(bfloat16(EIGEN_PI))), 20.f + static_cast<float>(EIGEN_PI));
VERIFY_IS_EQUAL(static_cast<float>(numext::expm1(bfloat16(0.0f))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(expm1(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::expm1(bfloat16(2.0f))), 6.375f);
VERIFY_IS_APPROX(static_cast<float>(expm1(bfloat16(2.0f))), 6.375f);
VERIFY_IS_EQUAL(static_cast<float>(numext::log(bfloat16(1.0f))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(log(bfloat16(1.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::log(bfloat16(10.0f))), 2.296875f);
VERIFY_IS_APPROX(static_cast<float>(log(bfloat16(10.0f))), 2.296875f);
VERIFY_IS_EQUAL(static_cast<float>(numext::log1p(bfloat16(0.0f))), 0.0f);
VERIFY_IS_EQUAL(static_cast<float>(log1p(bfloat16(0.0f))), 0.0f);
VERIFY_IS_APPROX(static_cast<float>(numext::log1p(bfloat16(10.0f))), 2.390625f);
VERIFY_IS_APPROX(static_cast<float>(log1p(bfloat16(10.0f))), 2.390625f);
}
void test_trigonometric_functions()
{
VERIFY_IS_APPROX(numext::cos(bfloat16(0.0f)), bfloat16(cosf(0.0f)));
VERIFY_IS_APPROX(cos(bfloat16(0.0f)), bfloat16(cosf(0.0f)));
VERIFY_IS_APPROX(numext::cos(bfloat16(EIGEN_PI)), bfloat16(cosf(EIGEN_PI)));
// VERIFY_IS_APPROX(numext::cos(bfloat16(EIGEN_PI/2)), bfloat16(cosf(EIGEN_PI/2)));
// VERIFY_IS_APPROX(numext::cos(bfloat16(3*EIGEN_PI/2)), bfloat16(cosf(3*EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::cos(bfloat16(3.5f)), bfloat16(cosf(3.5f)));
VERIFY_IS_APPROX(numext::sin(bfloat16(0.0f)), bfloat16(sinf(0.0f)));
VERIFY_IS_APPROX(sin(bfloat16(0.0f)), bfloat16(sinf(0.0f)));
// VERIFY_IS_APPROX(numext::sin(bfloat16(EIGEN_PI)), bfloat16(sinf(EIGEN_PI)));
VERIFY_IS_APPROX(numext::sin(bfloat16(EIGEN_PI/2)), bfloat16(sinf(EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::sin(bfloat16(3*EIGEN_PI/2)), bfloat16(sinf(3*EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::sin(bfloat16(3.5f)), bfloat16(sinf(3.5f)));
VERIFY_IS_APPROX(numext::tan(bfloat16(0.0f)), bfloat16(tanf(0.0f)));
VERIFY_IS_APPROX(tan(bfloat16(0.0f)), bfloat16(tanf(0.0f)));
// VERIFY_IS_APPROX(numext::tan(bfloat16(EIGEN_PI)), bfloat16(tanf(EIGEN_PI)));
// VERIFY_IS_APPROX(numext::tan(bfloat16(EIGEN_PI/2)), bfloat16(tanf(EIGEN_PI/2)));
// VERIFY_IS_APPROX(numext::tan(bfloat16(3*EIGEN_PI/2)), bfloat16(tanf(3*EIGEN_PI/2)));
VERIFY_IS_APPROX(numext::tan(bfloat16(3.5f)), bfloat16(tanf(3.5f)));
}
void test_array()
{
typedef Array<bfloat16,1,Dynamic> ArrayXh;
Index size = internal::random<Index>(1,10);
Index i = internal::random<Index>(0,size-1);
ArrayXh a1 = ArrayXh::Random(size), a2 = ArrayXh::Random(size);
VERIFY_IS_APPROX( a1+a1, bfloat16(2)*a1 );
VERIFY( (a1.abs() >= bfloat16(0)).all() );
VERIFY_IS_APPROX( (a1*a1).sqrt(), a1.abs() );
VERIFY( ((a1.min)(a2) <= (a1.max)(a2)).all() );
a1(i) = bfloat16(-10.);
VERIFY_IS_EQUAL( a1.minCoeff(), bfloat16(-10.) );
a1(i) = bfloat16(10.);
VERIFY_IS_EQUAL( a1.maxCoeff(), bfloat16(10.) );
std::stringstream ss;
ss << a1;
}
void test_product()
{
typedef Matrix<bfloat16,Dynamic,Dynamic> MatrixXh;
Index rows = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
Index cols = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
Index depth = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
MatrixXh Ah = MatrixXh::Random(rows,depth);
MatrixXh Bh = MatrixXh::Random(depth,cols);
MatrixXh Ch = MatrixXh::Random(rows,cols);
MatrixXf Af = Ah.cast<float>();
MatrixXf Bf = Bh.cast<float>();
MatrixXf Cf = Ch.cast<float>();
VERIFY_IS_APPROX(Ch.noalias()+=Ah*Bh, (Cf.noalias()+=Af*Bf).cast<bfloat16>());
}
EIGEN_DECLARE_TEST(bfloat16_float)
{
CALL_SUBTEST(test_numtraits());
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST(test_conversion());
CALL_SUBTEST(test_arithmetic());
CALL_SUBTEST(test_comparison());
CALL_SUBTEST(test_basic_functions());
CALL_SUBTEST(test_trigonometric_functions());
CALL_SUBTEST(test_array());
CALL_SUBTEST(test_product());
}
}
|