1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2020 Everton Constantino <everton.constantino@ibm.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
#include "main.h"
// Disable "ignoring attributes on template argument"
// for packet_traits<Packet*>
// => The only workaround would be to wrap _m128 and the likes
// within wrappers.
#if EIGEN_GNUC_AT_LEAST(6,0)
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#define GET(i,j) (StorageOrder == RowMajor ? (i)*stride + (j) : (i) + (j)*stride)
#define SCATTER(i,j,k) (StorageOrder == RowMajor ? ((i)+(k))*stride + (j) : (i) + ((j)+(k))*stride)
template<typename Scalar, typename Packet>
void compare(const Packet& a, const Packet& b)
{
int pktsz = internal::packet_traits<Scalar>::size;
Scalar *buffA = new Scalar[pktsz];
Scalar *buffB = new Scalar[pktsz];
internal::pstoreu<Scalar, Packet>(buffA, a);
internal::pstoreu<Scalar, Packet>(buffB, b);
for(int i = 0; i < pktsz; i++)
{
VERIFY_IS_EQUAL(buffA[i], buffB[i]);
}
delete[] buffA;
delete[] buffB;
}
template<typename Scalar, int StorageOrder, int n>
struct PacketBlockSet
{
typedef typename internal::packet_traits<Scalar>::type Packet;
void setPacketBlock(internal::PacketBlock<Packet,n>& block, Scalar value)
{
for(int idx = 0; idx < n; idx++)
{
block.packet[idx] = internal::pset1<Packet>(value);
}
}
void comparePacketBlock(Scalar *data, int i, int j, int stride, internal::PacketBlock<Packet, n>& block)
{
for(int idx = 0; idx < n; idx++)
{
Packet line = internal::ploadu<Packet>(data + SCATTER(i,j,idx));
compare<Scalar, Packet>(block.packet[idx], line);
}
}
};
template<typename Scalar, int StorageOrder, int BlockSize>
void run_bdmp_spec_1()
{
typedef internal::blas_data_mapper<Scalar, int, StorageOrder> BlasDataMapper;
int packetSize = internal::packet_traits<Scalar>::size;
int minSize = std::max<int>(packetSize, BlockSize);
typedef typename internal::packet_traits<Scalar>::type Packet;
int szm = internal::random<int>(minSize,500), szn = internal::random<int>(minSize,500);
int stride = StorageOrder == RowMajor ? szn : szm;
Scalar *d = new Scalar[szn*szm];
// Initializing with random entries
for(int i = 0; i < szm*szn; i++)
{
d[i] = internal::random<Scalar>(static_cast<Scalar>(3), static_cast<Scalar>(10));
}
BlasDataMapper bdm(d, stride);
// Testing operator()
for(int i = 0; i < szm; i++)
{
for(int j = 0; j < szn; j++)
{
VERIFY_IS_EQUAL(d[GET(i,j)], bdm(i,j));
}
}
// Testing getSubMapper and getLinearMapper
int i0 = internal::random<int>(0,szm-2);
int j0 = internal::random<int>(0,szn-2);
for(int i = i0; i < szm; i++)
{
for(int j = j0; j < szn; j++)
{
const BlasDataMapper& bdmSM = bdm.getSubMapper(i0,j0);
const internal::BlasLinearMapper<Scalar, int, 0>& bdmLM = bdm.getLinearMapper(i0,j0);
Scalar v = bdmSM(i - i0, j - j0);
Scalar vd = d[GET(i,j)];
VERIFY_IS_EQUAL(vd, v);
VERIFY_IS_EQUAL(vd, bdmLM(GET(i-i0, j-j0)));
}
}
// Testing loadPacket
for(int i = 0; i < szm - minSize; i++)
{
for(int j = 0; j < szn - minSize; j++)
{
Packet pktBDM = bdm.template loadPacket<Packet>(i,j);
Packet pktD = internal::ploadu<Packet>(d + GET(i,j));
compare<Scalar, Packet>(pktBDM, pktD);
}
}
// Testing gatherPacket
Scalar *buff = new Scalar[packetSize];
for(int i = 0; i < szm - minSize; i++)
{
for(int j = 0; j < szn - minSize; j++)
{
Packet p = bdm.template gatherPacket<Packet>(i,j);
internal::pstoreu<Scalar, Packet>(buff, p);
for(int k = 0; k < packetSize; k++)
{
VERIFY_IS_EQUAL(d[SCATTER(i,j,k)], buff[k]);
}
}
}
delete[] buff;
// Testing scatterPacket
for(int i = 0; i < szm - minSize; i++)
{
for(int j = 0; j < szn - minSize; j++)
{
Packet p = internal::pset1<Packet>(static_cast<Scalar>(1));
bdm.template scatterPacket<Packet>(i,j,p);
for(int k = 0; k < packetSize; k++)
{
VERIFY_IS_EQUAL(d[SCATTER(i,j,k)], static_cast<Scalar>(1));
}
}
}
//Testing storePacketBlock
internal::PacketBlock<Packet, BlockSize> block;
PacketBlockSet<Scalar, StorageOrder, BlockSize> pbs;
pbs.setPacketBlock(block, static_cast<Scalar>(2));
for(int i = 0; i < szm - minSize; i++)
{
for(int j = 0; j < szn - minSize; j++)
{
bdm.template storePacketBlock<Packet, BlockSize>(i, j, block);
pbs.comparePacketBlock(d, i, j, stride, block);
}
}
delete[] d;
}
template<typename Scalar>
void run_test()
{
run_bdmp_spec_1<Scalar, RowMajor, 1>();
run_bdmp_spec_1<Scalar, ColMajor, 1>();
run_bdmp_spec_1<Scalar, RowMajor, 2>();
run_bdmp_spec_1<Scalar, ColMajor, 2>();
run_bdmp_spec_1<Scalar, RowMajor, 4>();
run_bdmp_spec_1<Scalar, ColMajor, 4>();
run_bdmp_spec_1<Scalar, RowMajor, 8>();
run_bdmp_spec_1<Scalar, ColMajor, 8>();
run_bdmp_spec_1<Scalar, RowMajor, 16>();
run_bdmp_spec_1<Scalar, ColMajor, 16>();
}
EIGEN_DECLARE_TEST(blasutil)
{
for(int i = 0; i < g_repeat; i++)
{
CALL_SUBTEST_1(run_test<numext::int8_t>());
CALL_SUBTEST_2(run_test<numext::int16_t>());
CALL_SUBTEST_3(run_test<numext::int32_t>());
// TODO: Replace this by a call to numext::int64_t as soon as we have a way to
// detect the typedef for int64_t on all platforms
#if EIGEN_HAS_CXX11
CALL_SUBTEST_4(run_test<signed long long>());
#else
CALL_SUBTEST_4(run_test<signed long>());
#endif
CALL_SUBTEST_5(run_test<float_t>());
CALL_SUBTEST_6(run_test<double_t>());
CALL_SUBTEST_7(run_test<std::complex<float> >());
CALL_SUBTEST_8(run_test<std::complex<double> >());
}
}
|