1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template<typename EigType,typename MatType>
void check_eigensolver_for_given_mat(const EigType &eig, const MatType& a)
{
typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar;
typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<RealScalar> Complex;
Index n = a.rows();
VERIFY_IS_EQUAL(eig.info(), Success);
VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(),
eig.eigenvectors() * eig.eigenvalues().asDiagonal());
VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose());
VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues());
}
template<typename MatrixType> void eigensolver(const MatrixType& m)
{
/* this test covers the following files:
EigenSolver.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename std::complex<RealScalar> Complex;
MatrixType a = MatrixType::Random(rows,cols);
MatrixType a1 = MatrixType::Random(rows,cols);
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
EigenSolver<MatrixType> ei0(symmA);
VERIFY_IS_EQUAL(ei0.info(), Success);
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
EigenSolver<MatrixType> ei1(a);
CALL_SUBTEST( check_eigensolver_for_given_mat(ei1,a) );
EigenSolver<MatrixType> ei2;
ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
VERIFY_IS_EQUAL(ei2.info(), Success);
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
if (rows > 2) {
ei2.setMaxIterations(1).compute(a);
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
}
EigenSolver<MatrixType> eiNoEivecs(a, false);
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
MatrixType id = MatrixType::Identity(rows, cols);
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
if (rows > 2 && rows < 20)
{
// Test matrix with NaN
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
EigenSolver<MatrixType> eiNaN(a);
VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success);
}
// regression test for bug 1098
{
EigenSolver<MatrixType> eig(a.adjoint() * a);
eig.compute(a.adjoint() * a);
}
// regression test for bug 478
{
a.setZero();
EigenSolver<MatrixType> ei3(a);
VERIFY_IS_EQUAL(ei3.info(), Success);
VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
}
}
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
{
EigenSolver<MatrixType> eig;
VERIFY_RAISES_ASSERT(eig.eigenvectors());
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
VERIFY_RAISES_ASSERT(eig.eigenvalues());
MatrixType a = MatrixType::Random(m.rows(),m.cols());
eig.compute(a, false);
VERIFY_RAISES_ASSERT(eig.eigenvectors());
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
}
template<typename CoeffType>
Matrix<typename CoeffType::Scalar,Dynamic,Dynamic>
make_companion(const CoeffType& coeffs)
{
Index n = coeffs.size()-1;
Matrix<typename CoeffType::Scalar,Dynamic,Dynamic> res(n,n);
res.setZero();
res.row(0) = -coeffs.tail(n) / coeffs(0);
res.diagonal(-1).setOnes();
return res;
}
template<int>
void eigensolver_generic_extra()
{
{
// regression test for bug 793
MatrixXd a(3,3);
a << 0, 0, 1,
1, 1, 1,
1, 1e+200, 1;
Eigen::EigenSolver<MatrixXd> eig(a);
double scale = 1e-200; // scale to avoid overflow during the comparisons
VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale);
VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale);
}
{
// check a case where all eigenvalues are null.
MatrixXd a(2,2);
a << 1, 1,
-1, -1;
Eigen::EigenSolver<MatrixXd> eig(a);
VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.);
VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.);
VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.);
VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.);
VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.);
}
// regression test for bug 933
{
{
VectorXd coeffs(5); coeffs << 1, -3, -175, -225, 2250;
MatrixXd C = make_companion(coeffs);
EigenSolver<MatrixXd> eig(C);
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
}
{
// this test is tricky because it requires high accuracy in smallest eigenvalues
VectorXd coeffs(5); coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08;
MatrixXd C = make_companion(coeffs);
EigenSolver<MatrixXd> eig(C);
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
Index n = C.rows();
for(Index i=0;i<n;++i)
{
typedef std::complex<double> Complex;
MatrixXcd ac = C.cast<Complex>();
ac.diagonal().array() -= eig.eigenvalues()(i);
VectorXd sv = ac.jacobiSvd().singularValues();
// comparing to sv(0) is not enough here to catch the "bug",
// the hard-coded 1.0 is important!
VERIFY_IS_MUCH_SMALLER_THAN(sv(n-1), 1.0);
}
}
}
// regression test for bug 1557
{
// this test is interesting because it contains zeros on the diagonal.
MatrixXd A_bug1557(3,3);
A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0;
EigenSolver<MatrixXd> eig(A_bug1557);
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1557) );
}
// regression test for bug 1174
{
Index n = 12;
MatrixXf A_bug1174(n,n);
A_bug1174 << 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0;
EigenSolver<MatrixXf> eig(A_bug1174);
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1174) );
}
}
EIGEN_DECLARE_TEST(eigensolver_generic)
{
int s = 0;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( eigensolver(Matrix4f()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
TEST_SET_BUT_UNUSED_VARIABLE(s)
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
CALL_SUBTEST_4( eigensolver(Matrix2d()) );
}
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
// Test problem size constructors
CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
// regression test for bug 410
CALL_SUBTEST_2(
{
MatrixXd A(1,1);
A(0,0) = std::sqrt(-1.); // is Not-a-Number
Eigen::EigenSolver<MatrixXd> solver(A);
VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
}
);
CALL_SUBTEST_2( eigensolver_generic_extra<0>() );
TEST_SET_BUT_UNUSED_VARIABLE(s)
}
|