1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
template<typename MatrixType> void householder(const MatrixType& m)
{
static bool even = true;
even = !even;
/* this test covers the following files:
Householder.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
Scalar* tmp = &_tmp.coeffRef(0,0);
Scalar beta;
RealScalar alpha;
EssentialVectorType essential;
VectorType v1 = VectorType::Random(rows), v2;
v2 = v1;
v1.makeHouseholder(essential, beta, alpha);
v1.applyHouseholderOnTheLeft(essential,beta,tmp);
VERIFY_IS_APPROX(v1.norm(), v2.norm());
if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm());
v1 = VectorType::Random(rows);
v2 = v1;
v1.applyHouseholderOnTheLeft(essential,beta,tmp);
VERIFY_IS_APPROX(v1.norm(), v2.norm());
// reconstruct householder matrix:
SquareMatrixType id, H1, H2;
id.setIdentity(rows, rows);
H1 = H2 = id;
VectorType vv(rows);
vv << Scalar(1), essential;
H1.applyHouseholderOnTheLeft(essential, beta, tmp);
H2.applyHouseholderOnTheRight(essential, beta, tmp);
VERIFY_IS_APPROX(H1, H2);
VERIFY_IS_APPROX(H1, id - beta * vv*vv.adjoint());
MatrixType m1(rows, cols),
m2(rows, cols);
v1 = VectorType::Random(rows);
if(even) v1.tail(rows-1).setZero();
m1.colwise() = v1;
m2 = m1;
m1.col(0).makeHouseholder(essential, beta, alpha);
m1.applyHouseholderOnTheLeft(essential,beta,tmp);
VERIFY_IS_APPROX(m1.norm(), m2.norm());
if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0)));
VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha);
v1 = VectorType::Random(rows);
if(even) v1.tail(rows-1).setZero();
SquareMatrixType m3(rows,rows), m4(rows,rows);
m3.rowwise() = v1.transpose();
m4 = m3;
m3.row(0).makeHouseholder(essential, beta, alpha);
m3.applyHouseholderOnTheRight(essential.conjugate(),beta,tmp);
VERIFY_IS_APPROX(m3.norm(), m4.norm());
if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0)));
VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha);
// test householder sequence on the left with a shift
Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0));
Index brows = rows - shift;
m1.setRandom(rows, cols);
HBlockMatrixType hbm = m1.block(shift,0,brows,cols);
HouseholderQR<HBlockMatrixType> qr(hbm);
m2 = m1;
m2.block(shift,0,brows,cols) = qr.matrixQR();
HCoeffsVectorType hc = qr.hCoeffs().conjugate();
HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
hseq.setLength(hc.size()).setShift(shift);
VERIFY(hseq.length() == hc.size());
VERIFY(hseq.shift() == shift);
MatrixType m5 = m2;
m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
m3 = hseq;
VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
SquareMatrixType hseq_mat = hseq;
SquareMatrixType hseq_mat_conj = hseq.conjugate();
SquareMatrixType hseq_mat_adj = hseq.adjoint();
SquareMatrixType hseq_mat_trans = hseq.transpose();
SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj);
VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj);
VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans);
VERIFY_IS_APPROX(hseq * m6, hseq_mat * m6);
VERIFY_IS_APPROX(hseq.adjoint() * m6, hseq_mat_adj * m6);
VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6);
VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6);
VERIFY_IS_APPROX(m6 * hseq, m6 * hseq_mat);
VERIFY_IS_APPROX(m6 * hseq.adjoint(), m6 * hseq_mat_adj);
VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj);
VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans);
// test householder sequence on the right with a shift
TMatrixType tm2 = m2.transpose();
HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
rhseq.setLength(hc.size()).setShift(shift);
VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
m3 = rhseq;
VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
}
EIGEN_DECLARE_TEST(householder)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( householder(Matrix<double,2,2>()) );
CALL_SUBTEST_2( householder(Matrix<float,2,3>()) );
CALL_SUBTEST_3( householder(Matrix<double,3,5>()) );
CALL_SUBTEST_4( householder(Matrix<float,4,4>()) );
CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_8( householder(Matrix<double,1,1>()) );
}
}
|